

Creativity and Storytelling in Mathematics Education

Philipp Legner, @MathigonOrg 6 May 2020

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

SINE RULE SINA SING SING (xa) = xaxb = xab COSINE RULE" a2=b2+c2-2bc×Cos $OR \cos A = b^2 + c^2 - a^2$ 2bc

$$\frac{12}{\sqrt{15} - \sqrt{7}} = \frac{12}{\sqrt{15} - \sqrt{7}} \cdot \frac{\sqrt{15} + \sqrt{7}}{\sqrt{15} + \sqrt{7}}$$
$$= \frac{12\sqrt{15} + 12\sqrt{7}}{15 - 7}$$
$$= \frac{12\sqrt{15} + 12\sqrt{7}}{8}$$
hypotenuse
-c
$$= \frac{3\sqrt{15} + 3\sqrt{7}}{2}$$

 $c^2 = a^2 + b^2$

 $A \cup B$: "A union B" i.e. A or B or both $A \cap B$: "A intersection B" i.e. both A and B

 $x^{a} \times x^{b} = x^{a + b}$

xa-xb=xa-b

b

$$\frac{d}{dx}(\sinh(u)) = \cosh(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\cosh(u)) = \sinh(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\cosh(u)) = \operatorname{sech}^{2}(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\coth(u)) = -\operatorname{csch}^{2}(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\operatorname{sech}(u)) = -\operatorname{sech}(u)\tanh(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\operatorname{sech}(u)) = -\operatorname{csch}(u)\coth(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\operatorname{sech}(u)) = -\operatorname{csch}(u)\coth(u)\frac{du}{dx}$$
$$\frac{d}{dx}(\sinh^{-1}(u)) = \frac{1}{\sqrt{u^{2}+1}}\frac{du}{dx}$$

What is Mathematics all about?

Meaningful Mathematics

Art and Beauty

History of Mathematics

Puzzles, Patterns and Games

Understanding Nature and Science

Fiction

Problem-solving Critical Thinking Creativity Abstraction Precision

Useful Mathematics

Applications

Arithmetic + Algebra Modelling + Simulation Data Science Cryptography

Storyteling

TOWER

HORIZONTAL

0-Angle of Elevation

OBSERVER

Trigonometry

Π

Nº OF SCH

\$-Angle of Depression

Trigonometry

Mount Everest

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS CELEBRATING 100 YEARS

FRON A PHOTO BY C.C. SINONS.

Radhanath Sikdar

Sports Brackets

Football

© Liverpool Football Club

mathigon.org/go/carbon

Carbon Dating

mathigon.org/go/carbon

Carbon Dating

Carbon-14 6 protons 8 neutrons Nitrogen 7 protons 7 neutrons Antineutrino Electron

mathigon.org/go/cicadas

Monopoly

mathigon.org/course/statistics

Roulette

mathigon.org/course/statistics

RRR RRB BRR RBR BRB BBR RBB BBB

mathigon.org/timeline

Mathematics is filled with Stories!

Stories are great for teaching!

Get students excited and motivated

Make the content more memorable

Show careers and people who use math Encourage to keep studying math and STEM

Creating

Tessellations

mathigon.org/polypad

NUMBER TILES

POLYGONS

NUMBER BARS

mathigon.org/go/tessellations

mathigon.org/go/wallpaper

Volume Surface Area Nets/Cross Sections Euler's Formula 5 Platonic Solids

Photo by Dirk Eisner

mathigon.org/origami

Tetrahedron

Cube

Icosahedron

Truncated Tetrahedron

Cuboctahedron

Truncated Hexahedron

Truncated Octahedron

Intersecting Tetrahedra

Truncated Cuboctahedron

Snub Cube

Icosidodecahedron

Truncated Icosidodecahedron

Snub Dodecahedron

Photos by Dirk Eisner, Joel Lord, Andre Wiederkehr, Michal Kosmulski, noricum, ServeSmasher and fdecomite

mathigon.org/origami

Intersecting Tetrahedra

mathigon.org/go/mandelbrot

 $x_{n+1} = x_n^2 + c$

Mandelbrot Set


```
MandelComp = Compile[
    {{c, Complex}},
    Module[\{num = 1\},\]
    FixedPoint[(num++; #^2 + c)&, 0, 8191, SameTest->(Re[#]^2 + Im[#]^2>=4&)];
    num],
    CompilationTarget->"C",
    RuntimeAttributes->{Listable},
    Parallelization->True
];
Mandelbrot[x , y , m ]:=ArrayPlot[
    MandelComp[Table[a + I b],
        \{b, y - 2.7 * 2^{-m}, y + 2.7 * 2^{-m}, 0.005 * 2^{-m}\},\
        \{a, x - 4.8 * 2^{-m}, x + 4.8 * 2^{-m}, 0.005 * 2^{-m}\}(*0.002*)
    ]] / 8192,
    ColorRules->{1->Black},
    ColorFunction->MandelColor,
    ColorFunctionScaling->False,
    Frame->False,
    PixelConstrained->1
1;
```


ultrafractal.com

🚳 Ultra Fractal		
File Edit Fractal Animation Options Window Help		
	Layer Properties - Fractal1, Background	? _ ^
	Location Mapping Formula Inside Outsid	e
Fractal1	*Generic Coloring (Gradient)	8
	Color Density: 1	C
	Transfer Function: Linear 🔹	1
	Solid Color:	?
	Gradient Offset: 0	
	📝 Repeat Gradient	
	Coloring Algorit Orbit Traps ?	_ ^ _
		4
	Trap Position: Trap Position	
	Trap Center (R0.33208 -0	
	Trap Center (I 0.66415 -	
	Follows initial z	_
	Trap Drift (Re): 0	_
	Trap Drift (Im): 0	
	Trap Scale: 1	
	Rotation: 0	-
		? 🗆
	Layers Image History Comments	
	Normal	100%
C Exploring 2 X	Layer 1	
Range: 4 🍳 🍳	Background	D
		đ
	Fractal Mode - Fractal1	? -
	<u>به</u>	
1 10 20 30 40 50 60 70 80 90 100 Completed X: 261 Y: -217 Elapsed: 0:00:00.16 100 100 100	Compiler Messages	? 🗆 🔻

mathigon.org/course/fractals

imaginary.org/program/surfer

imaginary.org/program/surfer

 $(x^2+9/4 \cdot y^2+z^2-1)^3-x^2 \cdot z^3-9/80$

x^3+x^2·z^2-y^2

#MathArtChallenge

@KjerstiFried

@anniek_p

@RosieTChen

@Cshearer41

@jayproffitt

@bquentin3

12/2 1.4983... \approx 1.5

imaginary.github.io/web-hexachord/

imaginary.github.io/web-hexachord/

Creativity is Problem Solving!

Reduce complex problems to their essentials and discover patterns.

Express situations using new or different representations.

Recognise implicit assumptions and think outside the box.

Combine tools and results from different parts of mathematics.

Here are some *Trapezium Numbers*. There is just one number between 1000 and 2000 that *doesn't* form a Trapezium. Which one?

Here are some *Trapezium Numbers*. There is just one number between 1000 and 2000 that *doesn't* form a Trapezium. Which one?

Here are some *Trapezium Numbers*. There is just one number between 1000 and 2000 that *doesn't* form a Trapezium. Which one?

mathigon.org/puzzles

Resources

parallel.org.uk

Philipp Legner Year 7 • Edit Account • Logo

WEEK 15 Blackboard Equation

WEEK 14 Sumaze

WEEK 13 Good Will Hunting

WEEK 12 Maths Jokes

WEEK 11 The Secret of Happiness

WEEK 10 A matter of factorial!

WEEK 9 Easter challenges

WEEK 8 Tricky parking problem

WEEK 7 Optimising your pizza money

Year 7 • Parallelogram 13 Good Will Hunting

Noun: Parallelogram Pronunciation: / parəˈlɛləgram/

1. a portmanteaux word combining parallel and telegram. A message sent each week by the Parallel Project to bright young mathematicians.

There are only 3 more Parallelograms this year, as we will be starting our summer break at half-term. If you score highly enough in the last 4 Parallelograms (#12, this one, #14 & #15) by June 1, **then you will receive a Parallel certificate**. An average of more than 40% in these four Parallelograms wins a bronze certificate, then 60% or more wins silver

nrich.maths.org

Free resources and curriculum mapping documents

Early Years Primary Secondary, Post 16 and STEP

Events and PD

Primary Pupils

The tasks in this feature encourage you to play and explore, then think deeply about the mathematical ideas underneath.

See all problems Open for Solution See all Resources for ages 5-11

Your Solutions

Secondary Students

In this feature, explore the problems and then try to explain what's going on!

See all problems Open for Solution See all Resources for ages 11-18

Tweets by @nrichmaths	θ
C NRICH maths Retweeted	¥
Liz Woodham	

First day of @nrichmaths PD with a new group of primary teachers from Tower Hamlets. Six days focusing on whole class reasoning. And I get to work with @FranMaths too. Woo hoo

plus.maths.org

Welcome To Plus Magazine!

Welcome to the FIFA World Cup!

From making penalties fairer or taking the perfect free kick, to designing an ideal ball and predicting results using an octopus, it's all there in our collection of football articles. Take your pick!

Genetics: Nature's digital code

Is nature using digital tools to deal with genetic information?

Maths in a minute: Chomp

Explore a game that involves biscuits and comes with a surprising mathematical twist what could be better?

The real numbers and Cauchy sequences

We take the real numbers for granted, but what are they really? Here's an interesting way

Clocking the schedule

The way many football leagues schedule their fixtures can lead to unfair effects — and unsolved maths problems! Dries

www.mathscareers.org.uk

Featured Articles

Which Degree Courses need A-level Mathematics?

A-level Mathematics is one of the most widely accepted and respected subject choices by universities. Read about how it can enhance your course options.

Read the full

Joint degrees including mathematics

Choosing what to study at university can be hard. Lots of students choose to study joint degrees, where they study more than one subject.

Featured Profiles

Depaak Mahta - Data Scientist and Community manager

numberphile.com

Popular Mathematics Books

Hans Magnus Enzensberger

Alex Bellos Simon Singh Matt Parker

mathigon.org

Mathigon

Thanks for listening!

