



# Mathematical Creativity LaSalle MathsConf – 12 October 2019 Philipp Legner, @MathigonOrg









Mathigon.org

















### wodb.ca





| 0.5  | 0.25 |
|------|------|
| 0.75 | 0.3  |

| 27x <sup>2</sup> | <b>3</b> x <sup>2</sup> |
|------------------|-------------------------|
| 45x <sup>2</sup> | <b>9</b> x <sup>3</sup> |





# Tessellations





### mathigon.org/polypad























### mathigon.org/go/wallpaper







![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_18_Picture_1.jpeg)

# Polyhedra

![](_page_19_Picture_1.jpeg)

# Volume Surface Area Nets/Cross Sections Euler's Formula 5 Platonic Solids

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

### mathigon.org/origami

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

Cube

![](_page_21_Picture_5.jpeg)

Octahedron

![](_page_21_Picture_7.jpeg)

Truncated Tetrahedron

![](_page_21_Picture_9.jpeg)

Cuboctahedron

![](_page_21_Picture_11.jpeg)

Truncated Hexahedron

![](_page_21_Picture_13.jpeg)

Truncated Cuboctahedron

![](_page_21_Picture_15.jpeg)

Snub Cube

![](_page_21_Picture_17.jpeg)

Icosidodecahedron

![](_page_21_Picture_18.jpeg)

![](_page_21_Picture_20.jpeg)

Dodecahedron

![](_page_21_Picture_22.jpeg)

Icosahedron

![](_page_21_Picture_24.jpeg)

Intersection of Four Cubes

![](_page_21_Picture_26.jpeg)

Three Cubes and Two Tetrahedra

![](_page_21_Picture_28.jpeg)

**Truncated Octahedron** 

![](_page_21_Picture_30.jpeg)

Rhombicuboctahedron

![](_page_21_Picture_32.jpeg)

Intersecting Tetrahedra

![](_page_21_Picture_34.jpeg)

![](_page_21_Picture_36.jpeg)

Truncated Icosidodecahedron

![](_page_21_Picture_38.jpeg)

Snub Dodecahedron

![](_page_21_Picture_40.jpeg)

Intersecting Dodecahedra

![](_page_21_Picture_42.jpeg)

**Intersecting Planes** 

![](_page_21_Picture_44.jpeg)

### mathigon.org/origami

![](_page_22_Picture_1.jpeg)

© Mathigon.org

### $\star \star \star$

### MATHIGON ORIGAMI RHOMBICOSIDODECAHEDRON

more on mathigon.org/origami/

This model requires one quadratic sheet of paper.

![](_page_22_Figure_6.jpeg)

© Mathigon.org

more on mathigon.org/origami/

### **5 INTERLOCKING TETRAHEDRA**

![](_page_22_Figure_15.jpeg)

![](_page_22_Picture_16.jpeg)

![](_page_22_Figure_18.jpeg)

© Mathigon.org

![](_page_22_Picture_21.jpeg)

![](_page_22_Picture_22.jpeg)

![](_page_22_Figure_25.jpeg)

![](_page_23_Picture_0.jpeg)

# Modular Origami

![](_page_23_Picture_2.jpeg)

![](_page_24_Picture_0.jpeg)

# Fractals

![](_page_25_Picture_1.jpeg)

MandelComp = Compile[ {{c, \_Complex}},  $Module[\{num = 1\},\$ num], CompilationTarget->"C", RuntimeAttributes->{Listable}, Parallelization->True

### 1;

Mandelbrot[x\_, y\_, m\_]:=ArrayPlot[ MandelComp[Table[a + I b,  $\{b, y - 2.7 * 2^{-m}, y + 2.7 * 2^{-m}, 0.005 * 2^{-m}\},\$ ]] / 8192, ColorRules->{1->Black}, ColorFunction->MandelColor, ColorFunctionScaling->False, Frame->False, PixelConstrained->1 1;

FixedPoint[(num++; #^2 + c)&, 0, 8191, SameTest->(Re[#]^2 + Im[#]^2>=4&)];

 $\{a, x - 4.8 + 2^{-m}, x + 4.8 + 2^{-m}, 0.005 + 2^{-m}\}(*0.002*)$ 

### visnos.com/demos/fractal

![](_page_27_Picture_1.jpeg)

# Golden Ratio

![](_page_28_Picture_1.jpeg)

# Perspective Drawing

![](_page_29_Picture_1.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

1.49830707... ≈ 1.5

![](_page_30_Picture_5.jpeg)

![](_page_31_Picture_0.jpeg)

# Rhythm

![](_page_31_Figure_2.jpeg)

### imaginary.github.io/web-hexachord/

![](_page_32_Figure_1.jpeg)

Load Midi File

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

Reduce complex problems to their essentials and discover patterns.

Express situations using new or different representations.

> **Recognise implicit assumptions** and think outside the box.

different parts of mathematics.

### You break a stick in two different places, uniformly at random. What is the probability that the three resulting pieces form a triangle?

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

![](_page_38_Picture_0.jpeg)

### You break a stick in two different places, uniformly at random. What is the probability that the three resulting pieces form a triangle?

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Picture_2.jpeg)

You break a stick in two different places, uniformly at random. What is the probability that the three resulting pieces form a triangle?

![](_page_39_Picture_4.jpeg)

6

![](_page_40_Picture_2.jpeg)

Here are some *Trapezium Numbers*. There is just one number between 1000 and 2000 that doesn't form a Trapezium. Which one?

![](_page_40_Picture_4.jpeg)

![](_page_41_Picture_0.jpeg)

Here are some *Trapezium Numbers*. There is just one number between 1000 and 2000 that doesn't form a Trapezium. Which one?

![](_page_41_Picture_3.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Picture_2.jpeg)

Here are some *Trapezium Numbers*. There is just one number between 1000 and 2000 that doesn't form a Trapezium. Which one?

![](_page_42_Picture_4.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

### A market stall sells five kinds of fruit. I want to buy ten items. How many possible combinations are there?

![](_page_43_Picture_3.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

A market stall sells five kinds of fruit. I want to buy ten items. How many possible combinations are there?

![](_page_45_Figure_0.jpeg)

![](_page_45_Picture_1.jpeg)

### A market stall sells five kinds of fruit. I want to buy ten items. How many possible combinations are there?

# $\star \star \star \quad \star \star \star \quad \star \quad \star \star \star \quad \bullet$

# 14C4 = 1001

![](_page_45_Picture_6.jpeg)

### parallel.org.uk

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

Be challenged, get curious, do maths. Stretch your brain every week.

Dr Simon Singh, author of the No. 1 bestseller Fermat's Last Theorem and The Simpsons and Their Mathematical Secrets has created a set of weekly maths challenges - just 15 minutes of interesting, fun and challenging material that goes beyond school maths: mystery and history, activities and oddities, puzzles and problems. (After Christmas, the challenges will take a bit longer.)

### Welcome to the Parallel Maths Project!

• Sign up and each week on Thursday you will receive a Parallelogram, a weekly set of maths challenges. • It's FREE to sign up and all the materials we offer are FREE.

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

### nrich.maths.org

**Primary Secondary Students Students** 

### Welcome to the home of rich mathematics

### Teachers

![](_page_47_Picture_5.jpeg)

NRICH

Free resources and curriculum mapping documents

Early Years Primary Secondary, Post 16 and STEP

### **Events and PD**

![](_page_47_Picture_9.jpeg)

"It gave me some good ideas to use in the classroom and ... a link that I can get all of the activities

### **Primary Pupils**

![](_page_47_Picture_12.jpeg)

underneath.

See all problems Open for Solution See all Resources for ages 5-11

### **Your Solutions**

![](_page_47_Picture_16.jpeg)

Drimary

![](_page_47_Picture_18.jpeg)

The tasks in this feature encourage you to play and explore, then think deeply about the mathematical ideas

See if your solutions to our recent problems have been published

### **Secondary Students**

![](_page_47_Picture_24.jpeg)

In this feature, explore the problems and then try to explain what's going on!

See all problems Open for Solution See all <u>Resources for ages 11-18</u>

Tweets by @nrichmaths

### NRICH maths Retweeted

![](_page_47_Picture_29.jpeg)

First day of @nrichmaths PD with a new group of primary teachers from Tower Hamlets. Six days focusing on whole class reasoning. And I get to work with @FranMaths too. Woo hoo

Oct 9, 2019

0

![](_page_48_Picture_0.jpeg)

# (3) Problem Inventing

![](_page_48_Picture_2.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

![](_page_49_Picture_2.jpeg)

# Thanks for listening!

philipp@mathigon.org **MathigonOrg** 

![](_page_49_Picture_5.jpeg)