Storytelling and Creativity in Mathematics

Presented by: PHILIPP LEGNER

JANUARY 14 - 17, 2020 MIAMI BEACH CONVENTION CENTER MIAMI, FLA.

Storytelling and Creativity in Mathematics

Mathigon.org

Philipp Legner – @MathigonOrg

"It is the view of the ministry that a theoretical knowledge will be sufficient to get you through your examinations, which after all is what school is all about."

Problem Solving

Creativity

Critical Thinking

Trigonometry

Transverse Section

Photogravure

Survey of India Offices Calcutta, December, 1906.

NOJLI TOWER.

A STATION OF THE GREAT TRIGONOMETRICAL SURVEY, BUILT IN THE PLAINS OF UPPER INDIA NEAR ROORKEE. ND FROM WHICH THE HIMALAYAN PEAKS OF BADRINATH, KEDARNATH, JAONLI AND BANDARPUNCH HAVE BEEN OBSERVED

FROM A PHOTO BY C.D. SIMONS.

ELEVATION, SECTIONS & PLANS,

Illustrative of Colonel Everest's Towers on the Great Arc .

OLD ZENITH SECTOR, (RAMSDEN'S)

Radhanath Sikdar

Cicadas

18

Cicadas

Carbon Dating

Carbon Dating

Monopoly

7	8	9	10	11	12

Roulette

Cosπ+i.sin τ 3,987 +4,365 = 4,4 NP 0101100101 $+1 = 00 \pi = 3.141593$ b = Va THE SIMPSONS AND THEIR MATHEMATICAL SECRETS II ×I - (XXIII · LXXXIX) Moc A SIMON SINGH AUTHOR OF FERMAT'S LAST THEOREM $\frac{1}{12} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{1}{8} + \frac{1}{6} = \frac{1}{6} + \frac{1}{6} + \frac{1}{8} + \frac{1}{8} + \frac{1}{6} = \frac{1}{8} + \frac{1$

Mathematics is full of stories!

Applications

History and Mathematicians

Games and Puzzles

Science and Nature

Tessellations

mathigon.org/polypad

mathigon.org/go/wallpaper

Polyhedra

Volume Surface Area Nets/Cross Sections Euler's Formula 5 Platonic Solids

mathigon.org/origami

Cube

Octahedron

Truncated Tetrahedron

Cuboctahedron

Truncated Hexahedron

Truncated Cuboctahedron

Snub Cube

Dodecahedron

Icosahedron

Intersection of Four Cubes

Truncated Octahedron

Rhombicuboctahedron

Intersecting Tetrahedra

Truncated Icosidodecahedron

Snub Dodecahedron

Intersecting Dodecahedra

Intersecting Planes

mathigon.org/origami

$\star \star \star$

缬 MATHIGON ORIGAMI RHOMBICOSIDODECAHEDRON

more on mathigon.org/origami/

This model requires one quadratic sheet of paper.

© Mathigon.org

© Mathigon.org

more on mathigon.org/origami/

5 INTERLOCKING TETRAHEDRA

© Mathigon.org

Modular Origami

Fracta s


```
MandelComp = Compile[
    \{\{c, \_Complex\}\},\
    Module[\{num = 1\},\]
    num],
    CompilationTarget->"C",
    RuntimeAttributes->{Listable},
    Parallelization->True
];
```

```
Mandelbrot[x_, y_, m_]:=ArrayPlot[
    MandelComp[Table[a + I b,
        \{b, y - 2.7 * 2^{-m}, y + 2.7 * 2^{-m}, 0.005 * 2^{-m}\},\
    ]] / 8192,
    ColorRules->{1->Black},
    ColorFunction->MandelColor,
    ColorFunctionScaling->False,
    Frame->False,
    PixelConstrained->1
```

FixedPoint[$(num++; #^2 + c)$ &, 0, 8191, SameTest->(Re[#]^2 + Im[#]^2>=4&)];

 $\{a, x - 4.8 + 2^{-m}, x + 4.8 + 2^{-m}, 0.005 + 2^{-m}\}(*0.002*)$

visnos.com/demos/fractal

1.49830707... ≈ 1.5

Rhythm

imaginary.github.io/web-hexachord/

Load Midi File

File Start Recording

parallel.org.uk

Philipp Legner Year 7 • Edit Account • Logout

WEEK 15
 Blackboard Equation

WEEK 14

Sumaze

WEEK 13 Good Will Hunting

WEEK 12 Maths Jokes

WEEK 11 The Secret of Happiness

WEEK 10 A matter of factorial!

WEEK 9 Easter challenges Year 7 • Parallelogram 13 Good Will Hunting

Noun: Parallelogram Pronunciation: / parəˈlɛləgram/

 a portmanteaux word combining parallel and telegram. A message sent each week by the Parallel Project to bright young mathematicians.

plus.maths.org

Welcome To Plus Magazine!

Maths in a minute: Chomp

Welcome to the FIFA World Cup!

From making penalties fairer or taking the perfect free kick, to designing an ideal ball and predicting results using an octopus, it's all there in our collection of football articles. Take your pick!

The real numbers and

Clocking the schedule

Events Programs Galleries

IMAGINARY is your place for open and interactive

IMAGINARY open mathematics

Galleries Hands-On Films Texts

Exhibitions

www.mathscareers.org.uk

11-14	14-16	16-1
I . Maths	Enviror	ment

Featured Articles

Recent Articles

Featured Profiles

Depaak Mahta - Data **Scientist and Community**

numberphile.com

Weber's Law - Numberphile 327K views · 4 weeks ago

Numberphile

Floating Balls and Lift -

70K views • 1 day ago

The Slightly Spooky Recamán Sequence -...

235K views · 1 week ago Subtitles

g-conjecture - Numberphile 233K views • 1 month ago

The Problem with 7825 -Numberphile

452K views • 1 month ago Subtitles

SUBSCRIBE

SUBSCRIBED

mathigon.org

C

Mathigon

Introduction

Probability Trees	×
) Venn Diagrams	×
) Conditional Probability	×
) The Monty Hall Problem	n
) The Birthday Problem	×
) True Randomness	

Are you sure about that? You can still change your mind and select a different door...

A great choice, but let me make life a little easier for you. I'll open one of the other doors with a goat, so that there are only two doors left for you to pick from. Do you want to stick with your

Thanks for listening!

philipp@mathigon.org **MathigonOrg**

