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Editorial

B efore reading any part of this issue of Eureka, you will have noticed 
two big changes we have made: Eureka is now published in full col-
our, and printed on a larger paper size than usual. We felt that, with 

the internet being an increasingly large resource for mathematical articles of 
all kinds, it was necessary to offer something new and exciting to keep Eu-
reka as successful as it has been in the past. We moved away from the classic 
LATEX-look, which is so common in the scientific community, to a modern, 
more engaging, and more entertaining design, while being conscious not to 
lose any of the mathematical clarity and rigour.

To make full use of the new design possibilities, many of this issue’s articles 
are based around mathematical images: from fractal modelling in financial 
markets (page 14) to computer rendered pictures (page 38) and mathemati-
cal origami (page 20). The Showroom (page 46) uncovers the fundamental 
role pictures have in mathematics, including patterns, graphs, functions and 
fractals.

This issue includes a wide variety of mathematical articles, problems and 
puzzles, diagrams, movie and book reviews. Some are more entertaining, 
such as Bayesian Bets (page 10), some are more technical, such as Impossible 
Integrals (page 80), or more philosophical, such as How to teach Physics to 
Mathematicians (page 42). Whether pure or applied, mathematician or not, 
there will be something interesting for everyone. If you don’t know where 
to start reading, skim through the pages and have a look at the Number 
Dictionary at the bottom.

If you have any comments, would like to write an article for the next issue, 
or be part of the next production team, please do not hesitate to contact us 
or any member of the Archimedeans committee.

I hope you will enjoy reading the 61st issue of Eureka!

Philipp Legner
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Ben Millwood
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Philipp Kleppmann,  President 2011 − 2012

The highlight of this year’s Archimedeans’ 
calendar was the black-tie Triennial Dinner. 
Seventy-five members and guests attended 

the champagne reception and excellent meal in 
the Crowne Plaza Hotel to celebrate another step-
ping stone in the long life of the society.

We hosted several academic talks this year, start-
ing with Prof. Siksek’s account of Diophantine 
equations, their history, and methods of solving 
these deceptively simple-looking equations. Our 
main theme were the Millennium Prize Prob-
lems, with five engaging talks throughout the year. 
These problems where set by the Clay Mathemat-
ics Institute in 2000, and only one of them has 
since been resolved. The talk by Prof. Donaldson 
on the Poincaré Conjecture proved to be especial-
ly popular. Prof. Donaldson was on the Advisory 
Board that recommended Dr. Perelman as prize 
winner, and is an expert in the area.

At the end of term we organised the annual prob-
lems drive. The questions were set by last year’s 
winners, and people from as far away as Warwick 
took part in this light-hearted competition. The 
questions can be seen on the following pages; 
points were also awarded for the funniest and 
most creative answers.

The first event in Easter Term was a relaxing punt-
ing trip immediately after the exams. A little later 
we joined in the general madness of May Week 
with the Science Societies’ Garden Party. Novel-
ties this year were live music and a cheese bar – 
both went down very well!

This has been a fantastic year, both for our mem-
bers and for the committee, and we are looking 
forward to another interesting year. I would like 
to thank the committee for their dedication, and 
the members and subscribers of Eureka for their 
continued support.

The Committee 2011 – 2012
President
Philipp Kleppmann  (Corpus Christi)
Vice-President
Fangzhou Liu  (Sidney Sussex)
Corporate Officer
Sean Moss  (Trinity)
Internal Secretary
Colin Egan  (Gonville and Caius)
External Secretary
Laura Irvine  (Murray Edwards)

Treasurer
Lovkush Agarwal  (Corpus Christi)
Events Managers
Pawel Rzemieniecki  (Fitzwilliam)
Dana Ma  (Newnham)
Publicity Officer
Yuhan Gao  (Trinity)
Webmaster
Katarzyna Kowal  (Churchill)

The Archimedeans

Maximum number of colours needed to
colour any map in the Euclidean plane.
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  Archimedeans 
Garden Party 2011

  Archimedeans 
Garden Party 2011

Talk by Prof. 
Béla Bollobás

  Party after Prof. 
Bollobás’ Talk

  Fundamental 
Theorem of Comedy

  Post-Exams    
Punting 2011

  Post-Exams 
Punting 2011

Number of Platonic solids.
Number of vertices of a pyramid.
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Archimedeans Problems Drive 2011
by Mary Fortune and Jonathan Lee

1
A velociraptor spots you 40 meters away and 
attacks, accelerating at 4 m/s2 from a stand 
start, up to its top speed of 25 m/s. When it 
spots you, you begin to flee, quickly reaching 
your top speed of 6 m/s. How far can you get 
before you’re caught and devoured?

Attitude Adjuster 2
You are in the kitchen below. Half black 
squares are mirrored surfaces, and raptors 
may run on clear areas. If a raptor sees 
you in the corner of its eye, it will turn and 
give chase. Otherwise it will run forward. 
Raptors are intelligent and do not run into 
walls. If there is a choice they turn left. 
There are a number of bear traps scattered 
in the kitchen. If a raptor runs into any-
thing, they’re incapacitated and become 
someone else’s problem. Do you survive?3

Microraptors are quite like Raptors physi-
cally, except that they are smaller and less 
cantankerous (and are satisfied with Tuna). 
Being cheap to hire, they can improve a 
firm’s profit margin, and are being rolled out 
in accountancy firms across the country. It 
is hoped that no one will notice. Their limit-
ing factor is that they cannot use computers, 
and instead use the abacus, making use of 
a wall chart of all possible multiplications of 
the numbers from 1 to 10 (an old fashioned 
multiplication table). A Cambridge mathmo 
visited the office one day, and remarked that 
the sum of the entries in the table was a per-
fect square (which was true) and that the 
sum was 2420. Make a conjecture about the 
anatomy of Microraptors.

What Are The Civilian
Applications?

Funny, It Worked Last 
Time…

Smallest perfect number. Order of the smallest
non-abelian group. Number of distinct Quarks.
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This is the 2011 
Archimedeans 

Problems Drive. Some 
of the problems have 

tangential relations to math-
ematics and some were not 

invented here. 

4
There has been a Zombie outbreak on the 
Pirate island. Each Zombie infects 1 Pirate 
per day, and are invulnerable to Pirates. 
The Pirates have some caged Raptors. Rap-
tors kill Pirates and Zombies at a rate of 1 
(Pirate or Zombie)/Raptor/day, and breed 
at a rate 1 Raptor/Raptor/day. Zombies 
and Pirates both kill Raptors at a rate of 1 
Raptor/(Pirate or Zombie)/day. In line with 
conventional wisdom, take the continuous 
limit of Zombies, Pirates and Raptors.
There are P Pirates and 2/9 P Zombies. 
The plan, whilst falling outside the normal 
moral constraints, is to release some of the 
Raptors, so that the Raptors and Zombies 
will kill each other before the pirates. How 
many should be released? It may help to 
know that according to one congenital 
optimist, it should be possible to quell the 
zombie outbreak in ln(3) days.

The Precise Nature of the 
Catastrophe 5

You and a law student are in the CMS. In 
front of you are two choices - one of the 
rooms contains the answers to Examples 
Sheet 4 and the other contains your super-
visor’s pet raptor.
Guarding the way are 3 PhD students. The 
Statistician always lies, the Pure Mathema-
tician always tells the truth, and the Ap-
plied mathmo stabs people who ask tricky 
questions.
Fortunately, the law student is a potential 
sacrificial victim. What is the minimum 
number of questions you need to ask to 
determine which room contains the so-
lutions, and what is the probability of the 
lawyer dying under this strategy?

Another Victim Of The 
Ambient Morality

7
How much could the Earth’s rotation be 
slowed by the Earth’s population attempt-
ing to spin on the spot? Make any simplify-
ing assumptions you like. (Note that there 
is a grey area here, and if the markers disap-
prove of your assumptions, any excuses and 
accusations of bias will be given precisely as 
much credence as in tripos.)

Now We Try It My Way

8
How likely you are to survive a raptor at-
tack in the following objects:

–  CMS Core,
–  B pavilion,
–  the INU,
–  the UL,
–  an ACME Klein Bottle?

Explain your answers!

Experiencing A Signifi-
cant  Gravitas Shortfall

6
A specific section of the Pirate Island con-
tains 42 cages, each of which can hold pre-
cisely one dinosaur. Each dinosaur is either 
a Raptor, a T-rex or a Dilophosaurus. A 
particular ordering of dinosaurs is called an 
arrangement. Determine whether there are 
more arrangements which contain an even 
number of Raptors or more arrangements 
which contain an odd number of Raptors. 
Note that 0 is an even number.

Me, I’m Counting

Number of vertices of the smallest regular polygon that 
cannot be constructed with straight edge and compass.



8 Maximum number of cubes needed
to sum to any positive integer. 9

Well, you’ve sat through an hour of lucid 
nonsense. As with taxes, death and 
gravity, the end was unavoidable. 
Hopefully you saw some sense amid 
madness, wit amidst folly or at least a 
reasonable excuse for any unacceptable 
behaviour. 

There are 10 points per correct 
question but perverse, rule-
exploiting or otherwise silly 
answers may get 10 bonus 
points. The official an-
swers, and unlikely 
explanations to 
back them up, 
can be found 
on page 92.

1
0 In the interests of promoting science 

and mathematics to new generations of 
schoolchildren (and blind to any credibil-
ity problem), a new set of standard meas-
urements have been defined: The (male) 
African Elephant, The Olympic Swim-
ming Pool and the blink of an eye.
How many kettles would be required to 
consume one unit of power?

It’s Character Forming

1
1 In the far future, the good ship Arbitrary is 

carrying a payload of raptors. For reasons 
of volume, (and to avoid pesky constraints 
like the speed of light), it is storing them 
in a cage in hyperspace. Hyperspace has 
7 dimensions, and the cage is just large 
enough for two raptors to be adjacent in 
each dimension. However, the raptors 
haven’t been happy since the trip started, 
and so having a pair adjacent would result 
in a frank exchange of views, some mess, 
and a tragic loss of cargo. How many rap-
tors can be put in the cage?

Sleeper Service

1
2 In this question, everyone else is your un-

witting accomplice. There are two boxes. 
Box A might contain 10 points, and box B 
might contain 5. Alternatively they might 
contain Raptors, which do not have a point 
value. Each team is picking a box, and the 
box that the majority pick will contain a 
Raptor. The box that a minority pick will 
contain the relevant number of points. In 
the event of a tie, both boxes contain points. 
Choose a box. (Hint: Use Psychology)

Ultimate Ship The Second

9
The diagram below shows a series of Rap-
tor pens, which are separated from each 
other by electric fences.

5 9 4 3 7 2 6
7 3 8 8 2 1
2 9 2 4 7 3 4

Each pen holds a group of raptors; the 
numbers give the number of raptors in 
each family. At each stage, the following 
occurs:

i) The largest group of raptors wakes up.
ii) This group attacks the neighbouring 

pen which contains the fewest rap-
tors. As they lack tactical grace, one 
member of the group dies destroy-
ing the electric fence.

iii) Killing time: The two groups fight, 
and an equal number of raptors 
from each side is destroyed, until 
there is only one group left.

iv) The surviving group go back to sleep.

This continues until all raptor attacks 
cease. How many raptors are left alive, and 
from which pens did they originate?

Just Read The Instructions

Largest Fibonacci number which is a cube. Order
of the smallest non-commutative unitary Ring.
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Latest technologies
Mathematical challenges
Real world problems

The next level

WE THROW
THE TOUGHEST
PROBLEMS TO 
THE SMARTEST
PEOPLE

When it comes to producing groundbreaking research, 
we don’t take any chances. Only the best mathematical
minds join our Quantitative Research teams. And when
they do, they’re soon doing what they love best: tackling
tough mathematical challenges and solving real-world 
financial problems. Find out more at
www.gresearch.co.uk.

Quantitative Researchers

Gloucester Research is the trading name 
of GR Software & Research Limited

306120 GRL 247X174 CU  28/09/2011  11:29  Page 1
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Bayesian Bets
Andrew Pollard, Churchill College

The Monty Hall problem is a famous problem 
in probability: imagine you are on a game 
show, and you need to choose one of three 

doors. Behind one of the doors is the star prize, 
a car, and behind each of the other 
two is a relatively disappointing 
goat. Once you have chosen 
a door, the game show 
host then opens one of 
the other doors to re-
veal a goat. You then 
have the oppor-
tunity to change 
your mind and 
choose the other 
remaining door if 
you wish. Should 
you do so?

The Bayesian 
Approach
Most people think that it 
doesn’t matter, and some people 
think that you should switch (for exam-
ple, almost everyone reading this article). Anyone 
who has studied some probability will tell you that 
the probability of winning the car if you switch 
is 2/3, but everyone else will insist that it’s 50:50. 
When faced with the Monty Hall problem, most 
people think of the position of the car as random, 
which suggests that most people are intuitively 
Bayesian. Let’s have a look at what this means.

Two of the main approaches to problems such as 
the Monty Hall problem are the frequentist ap-
proach and the Bayesian approach. In the frequen-
tist approach, the position of the car is regarded 

as an unknown, but non-random, pa-
rameter; in this setting it is often 

easier to apply basic probabil-
ity theory. In the Bayesian 

approach, the position 
of the car is regarded 

as a random param-
eter, Θ, to which is 
assigned a speci-
fied prior distri-
bution, which is 
subjective; it is a 
(hopefully educat-
ed) guess at how 

Θ behaves. When 
data is observed, 

one updates the prior 
distribution to take the 

data into account, form-
ing the posterior distribu-

tion for Θ, from which we can 
make inference about Θ. A sensible 

prior distribution for the position of the 
car would be the uniform distribution, and this 
would lead to a posterior agreeing with the fre-
quentist result.

Bayesian methods are popular because of their 
ability to incorporate new information and up-
date statistical models.

Base of our number system. House number of the
British Prime Minister. Number of commandments.
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Decision-making
If we wish to make decisions using a Bayesian ap-
proach, we must also specify a loss function. If a is 
some act, the loss L(θ,a) measures the loss from 
taking the act a when our parameter Θ takes the 
value θ. For example, we might use zero-one loss 
in the situation where some acts will result in suc-
cess and the others in failure. In that case we as-
sign 0 to an act resulting in success, and 1 to an act 
resulting in failure. For more complicated (often 
continuous) situations, it may be appropriate to 
use a more complicated loss function.

For the Monty Hall problem, it would seem 
sensible to use 0–1 loss, unless you would like 
a goat. So we have a uniform prior distribution, 
and we have the 0–1 loss function. To make deci-
sions,  we have to look at the risk function. Let  
be the sample space, i.e. the set which our data 
takes values in (in the Monty Hall case, our data 
are the door we have chosen and the door the 
host shows us, so the sample space contains 
pairs of doors). Let  be the space of 
all possible acts, and define a 
(non-randomised) decision 
rule as a function d :  → . 
Let 0 be the set of all non-
randomised decision rules. 
Then we can define a general 
(randomised) decision rule as a 
random variable D taking values 
in 0 with some known distribu-
tion Δ. We can also define the risk function of a 
decision rule  with d ∼ Δ as 

R(θ,d) = Ed∼Δ�Eθ�L�θ,d(X)���.

The Monty Hall problem is a case where the set  
of all randomised decision rules is easily identifi-
able:

 = �d = {stick with probability p,
switch with probability 1 − p} : p ∈ [0,1]�.

Thus we can calculate the risk function of an arbi-
trary decision rule with respect to 0-1 loss: 

 R(θ,d) = p Eθ�L(θ, stick)�
  + (1 − p) Eθ�L(θ, switch)�.
Now 

Eθ�L(θ, stick)� = Pθ(lose after stick) = 2/3,
and 

Eθ�L(θ, switch)� = Pθ(lose after switch) = 1/3,

so we deduce R(θ,d) = (1 + p)/3. Note that the 
risk is independent of θ, so is uniformly mini-
mised when p = 0, i.e. the “always switch” rule. A 
decision rule δ is called Bayes with respect to a 
given distribution Π for Θ if it minimises the ex-
pected risk. This is written as

δ = arg mind∈ EΘ∼Π�R(θ,d)�.

Since, in the Monty Hall case, the risk function is 
independent of θ, the switching rule is Bayes with 
respect to any distribution for Θ.

By the way, Monty Hall presented a game show 
called “Let’s Make a Deal”, but this game was nev-
er actually on it!

The Two Envelopes Problem
Now that we are acquainted with the frequen-
tist and Bayesian analyses, let’s consider another 

game show. You are shown two envelopes, 
identical in appearance, and you are 

told that each contains money: 
one of the envelopes has 
twice the amount of money 
as the other, but you don't 

know which. You pick one 
at random, and you open 

it to find that it contains, say, 
£20,000. You then have the op-

portunity to switch envelopes if 
you wish.

From a frequentist perspective, suppose the small-
er amount of money is some fixed (but unknown), 
non-random parameter m. Then it is your guess 
that provides the randomness, with a 50:50 
chance of picking the envelope with m pounds in. 
In this case the fact that your envelope contains 
£20,000 tells you nothing; it is still a 50:50 chance 
that you would do better by switching.

As an interesting exercise, suppose for a moment 
that you do not open the envelope. Let’s call the 
unknown amount in your envelope M. Then rea-
son thus: the expected amount in the other en-
velope is  × M +  × 2M = M, so this suggests 
you should switch. But then we can repeat the 
argument again, calling the amount in the other 
envelope N, and so we should switch again! We 
thus have a strategy where we never settle on an 
envelope. What went wrong? We went from treat-
ing the amount in our envelope as non-random 
and the amount in the other envelope as random 

Smallest palindrome. Number of space-time
dimensions in M-theory. Size of a football team.



12

to the other way round – it’s important to be con-
sistent!

Let us try the Bayesian approach, constructing the 
problem more carefully. Call the two envelopes 
A and B. Let Θ be the envelope containing the 
(unknown) smaller amount of money. 
Give Θ a uniform prior distri-
bution on {A,B}. Now let X be 
your chosen envelope, also with 
a uniform distribution on {A,B} 
(independently of Θ). In observing 
that X contains £20,000, we are no fur-
ther to determining whether X = A or 
B. Thus we infer nothing about Θ from 
this observation, and our distribution 
for Θ remains the same. It is straightfor-
ward to show that under this joint distri-
bution for X and Θ, P(Θ = X) = 1/2. So far this is 
looking similar to the frequentist analysis.

Money is better than goats
It’s when we introduce a loss function that things 
start to become more variable. The value of dif-
ferent amounts of money is different for each 

person. Whichever way you look at it, £20,000 is 
pretty good – better than a goat at any rate, so we 
shouldn’t treat it the same! Let’s assign a loss of  1 
f o r getting £10,000 and h1 for getting 

£20,000 when the other enve-
lope contained £10,000 – no-

tice that we might not wish to 
set h1 = 0 if we want to repre-

sent how much better the higher 
amount is than the lower amount; 

the ratio between h1 and 1 could 
model just how much we care about 

the quantities. With cars and goats we 
were treating the car as infinitely better, 
so we used zero-one loss, but that might 
not be appropriate here. Similarly let 2 
be the loss for getting £20,000 when the 

other envelope contained £40,000, and h2 the loss 
for getting £40,000.

The decision space  for this problem is the same 
as for the Monty Hall problem. Consider the rule

d = {stick with probability p,
      switch with probability 1 − p}.

Then the risk function is

Get as close to a target number using six integers and
arithmetic operation in the British game show Countdown.

Smallest abundant number. Only sublime number
less than 1 trillion. Number of days of Christmas.

 You can win a car or a goat.
 Armin Kübelbeck
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 R(θ,d) = p Eθ�L(θ, stick)�
  + (1 − p) Eθ�L(θ, switch)�.
Now

Eθ�L(θ, stick)� = Eθ�L(θ, stick) | X = θ� Pθ(X = θ)
 + Eθ�L(θ, stick) | X ≠ θ� Pθ(X ≠ θ)
 = (2 + h1).
Similarly 

Eθ�L(θ, switch)� = (1 + h2),

so the risk is

R(θ, d) = �p(2 + h1) + (1 − p)(1 + h2)�.

Thus we see that finding a good rule in this case 
depends heavily on the subjective values i, hi. 
Notice that the rule p = 0, i.e. always switching, is 
Bayes iff 2 − 1 + h1 − h2 ≥ 0, and uniquely Bayes if 
the inequality is strict, whereas the rule p = 1, nev-
er switching, is Bayes and uniquely Bayes for the 
corresponding reversed inequalities. For example 
if we choose h1 = h2 = 0, 1 = 10 000 and 2 = 20 000, 
then 2 − 1 + h1 − h2 = 10 000 > 0, so switching is 
the unique Bayes rule. If however we take the loss 
from getting m pounds to be 10 000/m we get 
2 − 1 + h1 − h2 = −1/4 < 0, so sticking is the unique 

Bayes rule.

Is that your final answer?
Try analysing the games Who Wants to Be a Mil-
lionaire? and Deal Or No Deal using frequentist 
and Bayesian approaches – taking into account 
the value of each question or box might make 
things interesting. After using a 50:50 in Who 
Wants to Be a Millionaire? (the computer removes 
two of the three wrong answers at random), it is 
not advantageous (under frequentist analysis) to 
switch guesses. Can you see why this is different 
to the Monty Hall problem? Is there a Bayes rule 
for every situation in Deal or No Deal? Is that your 
final answer?

References, Further Reading
1. A. P. Dawid, Principles of Statistics Notes, 

Cambridge Mathematical Tripos Part II
2. R. Eastaway, J. Wyndham, How Long is a 

Piece of String?, Chapter 5: Should I Phone 
a Friend?

Can Mathematics help succeed in the famous 
game show Who want’s to be a Millionaire?

Neon Circus Ltd

Number of different Archimedean solids.
Number of cards of one suit. “Unlucky” number.
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Fractal Finance
Aidan Chan, Peterhouse College

How useful is financial mathematics in 
the real world? It depends on the under-
lying assumptions, the data input and 

the judgement of the user (and possibly more). 
Nonetheless, there were a lot of recriminations 
and accusations that mathematical finance had 
led the world into the financial crisis of 2007 – 
2010. Of course, there were more perpetrators 
than the religious orders of high finance, namely 
the US government which encouraged people to 
own homes they couldn’t afford, bad incentives, 
and cheap capital from China.

In the last 30 years, finance and economics have 
tried to imitate physics, placing an emphasis on 
the use of mathematics and theorem-proof struc-
tures, which requires assumptions. This is a tricky 
business: in finance, we are in a largely model-
ling human behaviour. The laws of physics are 
accurate to ten decimal places (at least classical 
physics); we can predict physical behaviour reli-
ably. Not so in finance. People are irrational, being 
influenced by events, their own feelings (swing-
ing between greed and fear 
rather abruptly), and their 
expectations of other peo-
ple’s feelings. Combined 
with the complex physical 
world of weather, epidem-
ics, crops, ores, and facto-
ries, modelling becomes 
considerably harder. The economy is a complex 
adaptive system. Empirically, the financial mar-
kets have complex, not binary payoffs, and the 
underlying probability distributions are fat-tailed. 
This is called Quadrant IV by Nassim Nicholas 

Taleb, and this is where conventional statistics 
fails us.

Underlying 
Probability 

Distribution

Payoff
Simple (Binary) Complex

Mild I (safe) II (Safe)
Wild III (safe) IV (dangerous)

In economic life, which sits in Quadrant IV, em-
pirical evidence shows that a laundry list of as-
sumptions used in mathematical models are 
wrong: markets are not continuous, volatility is 
not constant, previously uncorrelated markets 
can start to move together (correlation risk).

The world is Mandelbrotian
The father of fractal geometry, Benoit Man-
delbrot, had a predilection for the markets. He 
distinguished two types of randomness: mild 
(Gaussian) and wild (power laws). According to 

the former, market price 
changes can be picked at 
random from a pile consist-
ing of sand grains of differ-
ent sizes. In the latter, price 
changes are picked from a 
pile, containing dust, sand, 
stones, rocks, and boulders. 

Power-law distributions have higher moments 
that are unstable or changing over time, and for 
these distributions, the central limit theorem fails. 
Wild randomness can have one event dominating 
the rest; mild randomness typically doesn’t.

“…what’s brought the global banking 
system to its knees isn’t simply greed or 
wickedness, but – and this is far more 

frightening – intellectual hubris.”
John Gray

Sum of the first three squares, i.e. a square- pyramidal 
number. No, we didn’t make up this name!
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The frequency of an event follows a power law 
when it varies as a power of some attribute of that 
event. Since power laws exhibit scale invariance, 
an easy way to understand power-law or scaling 
systems is using conditional probability. For ex-
ample, if the probability of a loss of 1000 given a 
loss of 100 are the same as that of a loss of 10 000 
given 1000, that’s a power law. The most famous 
is Pareto’s power law. He found that roughly, 20% 
of Italians owned 80% of all the land in his time. 
Within that 20%, again 20% of the 20% own 80% 
of the 80% of the land, i.e. 4% own 64% of the 
land.

Most classical applications of statistics are based 
on the key assumption that the data distribution 
is Gaussian, or some other known form. Classical 
statistics work well and allow you to draw precise 
conclusions if you’re correct in your assumption 
of the data distribution. However, if your distribu-
tion assumptions are even a little bit off, the error 
is enough to derail the delicate statistical estima-
tors. Mandelbrot’s conjecture: price change dis-
tributions have infinite variance; sample variance 
(the implied variability in prices) simply increases 
as more data is added. If this were true, most 
standard statistical techniques would be invalid 
for price data applications. Unfortunately, there 
are statistical problems in determining if the vari-
ance of price change is infinite. Gathering enough 
data to “assure” that price change variance is in-
finite might take a century. But, if market prices 
have infinite variance, any classically derived esti-
mate of risk will be significantly understated.

Tomorrow doesn’t look             
like yesterday
Recall Bertrand Russell’s turkey (or induction) 
problem. In markets: “this event has never hap-
pened in my market”. Suppose one were living in 
the era of September 1987, just before the finan-

Financial Markets: as complex 
as the Mandelbrot fractal?

 Anton Feenstra

Mild Price Changes Wild Price Changes

Magic constant in an order-3 magic square. Largest
composite number with only one group of that order.

cial crisis in October that year. The worst change 
in markets on any given day, based on histori-
cal data before 1987, was –10%. So models were 
mostly calibrated to simulate what happened to 
the portfolio, based on the worst case scenario of 
a –10% change on a given day. And sure enough, 
there was a –23% move in the markets in one day 
in October 1987. Models may be recalibrated such 
that the worst-case scenario is –23% in a day, but 
the next time it may be a –50% move. Data from 
the past may not be relevant to today, again be-
cause of complexification of the economy. They 
are still looking through the rearview mirror and 
they have by definition very few data points in that 
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region. In fact, for some markets, one observation 
will account for 80%, even 90%, of the “weight” in 
the estimation of the magnitude of the tail risk.

Complexification of the economy means that rare 
events are increasingly unpredictable, with con-
sequences that are increasingly dire. If someone 
says that this extreme event, according to their 
mathematical model, occurs no more than once 
in 10 000 years, and if they have not lived 10 000 
years, it is fair to assume they are not drawing 
their conclusion from their own empirical experi-
ence but from some theoretical model that pro-
duces the risk of rare events. More often than not, 
the model is wrong about rare events.

Consider also the self-reference problem, perva-
sive in financial mathematics: when do we have 
enough historical data to make an inference about 
the probability distribution? If the distribution is 
Gaussian, then we are able to say we have enough 
data – the normal distribution itself tells us how 
much data we need. But if the distribution is not 
from a well-behaved family, we may not have 
enough data. But how do we know which distri-
bution we have? From the data itself! If one needs 
data to obtain a probability distribution to ap-
proximate knowledge about the future behaviour 
of the distribution from its past results, and if, at 
the same time, one needs a probability distribu-
tion to determine data sufficiency and whether or 
not it is predictive outside its sample, we have a 
severe self-reference problem and have no idea 
what weight to put on additional data points.

How much can you lose?
The most popular model being used by financial 
firms is Value-at-Risk (VaR). Normal, parametric 
VaR modelling is based on assumptions. Three 
false ones: stationary (constant-shaped prob-
ability distribution over time), Brownian motion/
random walk (tomorrow’s outcome is independ-
ent of today’s outcome) and normally-distributed 
price changes. VaR works as such: a financial firm 
decides how “safe” it wants to be. Say, it sets a 
99% confidence level. Its investments are osten-
sibly structured so that there is only a 1% chance 
of breaking through the danger point. The model 
also inputs an array of variables, including diver-
sification, leverage and volatility, to calculate the 
market risk. With a few more strokes, a risk man-
ager can get an answer, e.g. that his firm’s portfolio 

has a 1% chance of losing more than £50 million 
(or say, 20%) this week.

The weakness of VaR seems to be that it measures 
boundary risk instead of expected value. It doesn’t 
really answer the question “how much can I lose?”. 
If one were at a casino, and was offered an exot-
ic game with no entrance fee, where 99% of the 
time one wins £10, and 1% of the time one loses 
£1,000,000, it would be wise not to play, for the 
game has a negative expected value (here assum-
ing one is not playing a game like the St. Peters-
burg Paradox). 

One fixture to the VaR model is Extreme Value 
Theory, which is gaining popularity. It assumes 
price changes scale, and that there are “fat tails”. 
However, it does not fix the problem of long-
term dependence, which is the scenario where 
bad news is followed by more bad news; a day of 
down in the markets is more likely to be followed 
by another day of down. A bank may survive one 
Black Swan event, but not 2 or 3 in succession (e.g. 
earthquake in Christchurch followed by Fukush-
ima, if the bank is invested in securities exposed 
to both events).

Options
Options are the right, but not the obligation to 
buy or sell a certain asset at a certain price at a 
certain time. The Black-Scholes options pricing 
formula identified key variables that affect what 
an option is worth: where the price of the asset 
currently is, compared to the strike price (where 
the price has to be for the bet to show a profit), 
how volatile the underlying asset tends to be, how 
much time before expiration, and prevailing re-
turns on risk-free investments.

Such a pricing formula had in fact been used by 
traders in Chicago years before and was based 
on the principles developed by mathematician 
and gambler Ed Thorp. Options had been ac-
tively trading at least in 1600 as described by De 
La Vega (1688), implying a heuristic method to 
price them and deal with their exposure. What 
Merton and Scholes did was to make it aligned 
with financial economic theory, by deriving it 
assuming “dynamic hedging”, a method of con-
tinuous adjustment of portfolios by buying and 
selling securities in response to price variations. 
Dynamic hedging assumes no jumps; it fails mis-
erably in markets and did so catastrophically in 

Only number of the form x y = y x

with x and y distinct integers.
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 Anton Feenstra
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1987. Black-Scholes should be used merely as a 
pricing guide for options, since we know volatility 
is not constant and markets jump. Funds that em-
ploy high leverage to bet on arbitraging options’ 
market price and Black-Scholes price is liable to 
blow up, Long Term Capital Management-style, 
when markets suddenly turn rough.

Escaping Quadrant IV
Other modelling methods relying on variance as a 
measure of dispersion, Gaussian Copulas, and the 
ARCH family of models are incapable of predic-
tion where fat-tailed distributions are concerned. 
Part of the problem is that these methods miscal-
culate higher statistical moments (for non-linear 
magnitudes such as highly-leveraged reinsurance, 
higher moments are important), and thus lead to 
catastrophic estimation errors. No method will 
work for more than a short time horizon, just as 
no weather forecast works well over a period of 
2 weeks.

To make our forecasts more reliable, we should 
escape Quadrant IV. We can attempt this through 
payoff truncation (for an insurer: reinsurance and 

payoff maximums; for an options trader: don’t 
sell naked options), ostensibly swapping complex 
payoffs to simple payoffs (reducing leverage); in 
reality we are still in Quadrant IV. Counterparty 
risk is still in play.

Perhaps it’s better is to try not to predict; Mandel-
brotian fractal models based on power laws can 
help us understand better the behaviour of Black 
Swans, although they do not help to forecast.

The World is Complex
Forecasting is becoming less and less reliable be-
cause our world is becoming more interdepend-
ent, and complexification has only increased since 
1995 because of the internet. You do not have the 
independence assumption used in many models 
before the crisis. 

We are safer using much larger data samples over 
much longer time periods to form our judgements, 
while actively searching for counterexamples to 
our initial results. Over-reliance on modelling is a 
severe limitation. One must combine good judge-
ment and experience together with the use of 

The “Seahorse Valley” in the Mandelbrot Set
 Anton Feenstra
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models such as VaR. Without models and math-
ematics, it would be hard think about finance and 
economics, but it’s important to fit our models to 
the world, instead of expecting the world to obey 
our models. A tailor makes a suit for a client by 
measuring him and cutting the cloth to fit, not by 
performing surgery on him. The use of any finan-
cial model should entail us questioning where it 
can go wrong, and how practical it is despite its 
assumptions.  We need robust statistical estima-
tors, estimators which are not perturbed much 
by mistaken assumptions about the nature of the 
distribution.

Finally, we should heed the modeller’s Hippo-
cratic Oath by Emanuel Derman and Paul Wil-
mott:

•	 I will remember that I didn't make the world, 
and it doesn't satisfy my equations.

•	 Though I will use models boldly to estimate 
value, I will not be overly impressed by  
mathematics.

•	 I will never sacrifice reality for elegance 
without explaining why I have done so.

•	 Nor will I give the people who use my model 
false comfort about its accuracy. Instead, 
I will make explicit its assumptions and 
oversights.

•	 I understand that my work may have enor-
mous effects on society and the economy, 
many of them beyond my comprehension.
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These five interlocking tetrahedra are made from
30 individual pieces, using no scissors or glue. 

Philipp Legner
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Origami shapes and paper models of Archi-
medean solids are not only nice to look 
at, they give rise to an interesting area of 

mathematics. Similarly to the idea of constructing 
polygons using nothing but a straight edge and a 
compass, you can think about which shapes and 
solids you can fold using a sheet of paper and no 
other tools. The results are surprisingly different 
from ruler and compass geometry!

Even more beautiful objects can be created if 
you are allowed to use scissors and glue. I have 
included photos and folding patterns of braided 
platonic solids, knotted pentagons and interlock-
ing polyhedra.

The Axioms of Origami
In 1992, the Italian-Japanese mathematician Hu-
miaki Huzita published a list of all possible op-
erations that are possible when folding paper.

O1 We can fold a line connecting any two points 
P and Q.

O2 We can fold any two points onto each other.
O3 We can fold any two lines onto each other.
O4 Given a point P and a line L, we can make a 

fold perpendicular to L passing through P.
O5 Given two points P and Q and a line L, we 

can make a fold that passes through P and 
places Q onto L.

O6 Given two points P and Q and two lines 
K and L, we can make a fold that places P 
onto line K and places Q onto line L. 

A seventh one was discovered by Koshiro Hatori:

O7 Given a point P and two lines K and L, we 
can fold a line perpendicular to K  placing P 
onto L.

This set of axioms is much more powerful than 
the one corresponding to straight edge and com-
pass: connecting any two points with a straight 
line and drawing a circle of radius r around any 
point. There are many interesting consequences: 
you can trisect angles, double cubes and even con-
struct regular heptagons and 19-gons.

Even more surprisingly, we can use Origami to  
fold any rational number. Consider a square piece 
of paper  of side length 1 and suppose, for induc-
tion, that we can fold one side into (n − 1)th, as 
shown. Then we can also fold it into n th the by

•	 folding the along CD;
•	 folding the line EB;
•	 folding the line FG 

through X, perpen-
dicular to the edge 
of the paper.

Now observe that

1 − x = x (n − 1)
x = 1�n,

so we have divided the side of the square into n th. 
We can easily divide the side of the square into 
halves. Thus, by induction, we can use origami to 
fold any ratio, as required.

Mathematical Origami
Philipp Legner,  St John’s College

C

D

E

B

X

A

x

1/(n−1)

F

G

Smallest number of squares of distinct size needed
to tile a square. Magic number in Blackjack.
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Cunning Constructions
The proofs of the following constructions are left 
to the reader. They are based on simple geometric 
relations and can also be found in [3].

Trisecting the Angel
We start with a square piece of paper and fold a 
crease L, as shown below, to create any angle α at 
P. To trisect α, we have to

•	 fold the paper into quarters from top to bot-
tom and define K and Q as shown;

•	 simultaneously fold  P onto K and Q onto L 
using axiom 6, and don’t reopen;

•	 extend K by a new crease M.

P

L

Q

K
P

L

K Kα
α

K

MQ

If we now open the paper and extend M to its full 
length, it will divide α in the ration 1:2. Halving 
the larger part of the angle then splits α into three 
equal parts.

Doubling the Cube
Even the ancient Greeks knew that it is impossible 
to double a cube, i.e. construct 3√

-2 using nothing 
but ruler and compass. It was rather discourag-
ing when the oracle in Delphi prophesied that a 
plague could be defeated by doubling the size of 

the altar to Apollo – if only they had known an-
cient Japanese Origami artists…

Again let us start with a square sheet of paper. We 
first fold the paper into thirds (since we can fold 
any ratios), and define K, L, P and Q as shown 
below. We now fold P onto K and Q onto L using 
axiom 6, and the ratio of the lengths x and y in the 
diagram is precisely 3√

-2.

P
L

Q

K

L

K P

Q

x

y

Incidentally, the third “classical” problem that 
is impossible with straight edge and compass, 
squaring the circle, is impossible even using Ori-
gami, since it involved constructing the transcen-
dental ratio √π−.

Solving Cubic Equations
It is known that quadratic equations can be solved 
with straight edge and compass. With Origami, 
we can also solve cubic equations.

Suppose have an equation x 3 + ax 2 + bx + c = 0. 
Let P = (a,1) and Q = (c,b) in a coordinate system. 
Furthermore, let K be the line y = −1 and L be the 
line x = −c as shown below. Using axiom 6, we can 
simultaneously place P onto K (at P ′) and Q onto 
L (at Q ′) to create a new line M. Suppose that  M 
has equation y = αx + β, for some α, β ≠ 0.

Number of partitions of 8. Number of
Major Arcana cards in Divinatory Tarot. 

One can make a perfect regular pentagon
simply by knotting a strip of paper.
 All by Philipp Legner

A stellated rhombic Dodecahedron
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Let Ψ1 be the parabola 4y = (x − a)2 with focus 
P and directrix K. Then M is a tangent to Ψ1 at a 
point (u1,v1) – this is illustrated by the dotted red 
lines in the diagram below. Differentiating gives 
α = (u1 − a) and we can deduce β = −α2 − aα.

Let Ψ2 be the parabola 4cx = (y − b)2 with focus 
Q and directrix L. Again M is a tangent to Ψ2 at a 
point (u2,v2) and we can find β = b + c�α.

Setting these two results equal shows that 
α = (u1 − a) satisfies x 3 + ax 2 + bx + c = 0, i.e. is 
the solution we are looking for.

P

L Q

K
M

(u1,v1)

–c a c

b

Ψ1

–1P′

Q′

Doubling the cube is equivalent to solving the 
cubic x3 − 2 = 0, while trisecting the angle is 
equivalent to solving x3 + 3tx2 − 3x − t = 0 with 
t = 1�tanθ and x = tan(θ�3 − π�2).

We can define the set O of Origami Numbers, 
numbers that can be constructed using origami. 
It  includes the corresponding set for straight edge 
and compass constructions, and is the same as for 
constructions using a market rule and compass.

We can also construct many regular polygons 
using Origami: precisely those with 2a3bρ sides, 
where ρ is a product of distinct Pierpont primes, 
that is, primes of the form 2u3v + 1.

The Art of Folding Paper
Finally let us look at some of the artistic aspects 
of paper folding. The word Origami (折り紙) origi-
nates from the Japanese oru (to fold) and kami 
(paper). Japanese monks were among the first to 
turn the amusement into a sophisticated art. On 
the next page you can see some great examples.

Especially useful for creating mathematical sol-
ids if modular origami: you fold many individual 
pieces (such as faces) separately and then stack 
them together.

An ingenious method for creating Platonic solids 
is “braiding” particularly shaped strips of paper.  
When using differently coloured paper, this pro-
duces some of the most beautiful and decorative 
objects. The patterns can be found on the follow-
ing page. Start with the tetrahedron before at-
tempting the larger solids – you may need lots of 
paper clips, or another pair of hands!

References, Further Reading
Robert Lang’s website (see below) is a great place 
to start both for building origami and reading 
about the mathematical background.
1. R. Lang, P. Wang-Iverson, and M. Yim, 

Origami^5, CRC Press (2011)
2. R. Lang, www.langorigami.com
3. J. Krier, math.uttyler.edu/nathan/classes/

senior-seminar/JaemaKrier.pdf
4. Cut-The-Knot, www.cut-the-knot.org/py-

thagoras/PaperFolding/index.shtml

Least number of distinct integer-sided
cuboids needed  to make up another cuboid.

An Origami Icosahedron A braided Dodecahedron
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Upupa Epops, Fugu and Crayfish
Sipho Mabona
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For best effect, enlarge this page to A3 and copy it on heavy, coloured paper. Start by cutting out 
the required number of strips for each solid and carefully creasing all lines in the same direction. The 
stars should be visible on the inside of the bottom face; only for the Dodecahedron and Icosahedron 
some strips are added later. It will be helpful to use paperclips to hold the finished faces in place.

Tetrahedron
3 needed

Cube
4 needed

Octahedron
4 needed

Dodecahedron
6 needed

Icosahedron
6 needed

Smallest square that can be written as a sum of
two squares. An aspiring and non-sociable number.
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Quantum 
Entanglement
Elton Yechao Zhu, Queens’ College

In quantum mechanics, a particle does not 
have a definite state (e.g. position, momen-
tum etc.), but rather can exhibit a few states 

simultaneously, each with certain probability. The 
spin of an electron (loosely 
speaking, the direction of 
its angular momentum) 
has two states upon stand-
ard basis measurement, up 
(denoted by �0⟩ ) and down 
(denoted by �1⟩ ). Hence, 
the quantum state of an 
electron is a superposition of these two states. �ϕ⟩ 
= a �0⟩ + b �1⟩, a and b being complex numbers. �a�2 
is the probability of getting �0⟩ when a measure-
ment is made and �b�2 is the corresponding one for 
�1⟩. Similarly, a combined state of two electrons 
could be �0⟩�0⟩, �0⟩�1⟩, �1⟩�0⟩, �1⟩�1⟩ upon standard 
basis measurement. Any linear combination of 
these four states with the appropriate coefficient 
(i.e. the sum of probabilities is 1) is a feasible 
quantum state.

Entangled Quantum States
An entangled state is a quantum state which can-
not be written as a product of individual states. For 
example, ��0⟩A �0⟩B + �1⟩A �1⟩B� ≠ �ϕA⟩�ϕB⟩ for any 
possible ϕA and ϕB (If you don’t believe it, please 
give it a try). Suppose Alice has electron A and 
Bob has electron B. A and B are entangled with 
the above state. Alice and Bob are physically sepa-
rated but can choose to communicate with each 
other (e.g. a telephone line). If Alice measures 
electron A and Bob measures electron B instan-

taneously afterwards, then the state of electron B 
will always be the same as that of electron A, since 
their combined state could only be �0⟩A �0⟩B or 
�1⟩A �1⟩B. This can be regarded as a correlation be-

tween the states of the two 
electrons. This correlation 
of measurement outcomes 
occurs regardless of the 
distance of the entangled 
pair, so we can assume the 
two electrons have no in-
teraction with each other. 

Einstein once famously derided the concept of 
entanglement as ‘spooky action at a distance’, as he 
couldn't understand how correlation could arise 
without interaction [4]. 

Faster than Light
Someone may ask that this violates special rela-
tivity, since this thought experiment seems to 
allow superluminal transmission of information 
from Alice to Bob.  However, this is not true, as 
explained below. The measurement outcome by 
Alice is entirely unpredictable (probability half 
of either state). Without Alice telling Bob, even if 
the state of electron A is already determined, it is 
still unknown and unpredictable to Bob. There-
fore, although Bob knows that his measurement 
outcome is always the same as that by Alice, he 
can’t predict it, since he can't predict what Alice 
got. Therefore, if Bob measures his electron, he 
has no way to tell whether Alice has made a meas-
urement or not, unless Alice tells him. Moreover, 
if Bob does not measure his electron, he cannot 

Only positive number to be directly between a
square and a cube. Number of sporadic groups.

“I think I can safely say that nobody 
understands quantum mechanics.”

Richard Feynman
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predict his result unless Alice tells him her meas-
urement outcome. In both cases, the process of 
Aice telling something to Bob will not be faster 
than light.

Entanglement is a fundamental feature of quan-
tum mechanics, and a useful resource as well. 
Entanglement is a precedent to quantum non-
locality, quantum teleportation and lots of other 
phenomenons or operations in quantum mechan-
ics. Quantum non-locality is just the above phe-
nomenon that measurement by Alice can instan-
taneously influence measurement by Bob.

Uncertainty
One of the other famous features of quantum 
mechanics is Heisenberg’s uncertainty principle, 
which states that it is impossible to accurately 
measure both the position and momentum of a 
particle. Recently, researchers have uncovered 
surprising links between non-locality (arise from 
quantum entanglement) and the uncertainty 
principle [1]. They showed that the “amount” of 
non-locality is determined by the uncertainty 
principle. This is a dramatic breakthrough in our 
basic understanding of quantum mechanics.

Entangled particles remain intimately and 
instantaneously linked throughout their existence.
Philipp Legner

In the Collaz Conjecture you need 112 steps to get
from 27 to 1. It is the sum of the digits of its cube.
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Teleportation
Quantum teleportation, or entanglement-assisted 
teleportation, is a process by which the informa-
tion of an electron (technically, a qubit) can be 
transmitted exactly from one location to another, 
without the electron being physically moved to 
the other location.

Suppose Alice has an electron in an unknown 
quantum state �ϕ⟩ (i.e. a and b are unknown) and 
she wants to pass this state to Bob. How can she 
do it? She has two obvious options:

•	 Physically carry this electron to Bob.
•	 Measure this electron to get information 

about a and b, then tell Bob so that he can 
recover the state.

Option 1 is highly undesirable, since quantum 
states are very fragile.

Option 2 cannot be implemented, since a meas-
urement irreversibly changes the state of the elec-
tron. After the measurement, the state of the elec-
tron is fixed to �0⟩ or �1⟩, and you cannot recover 
�ϕ⟩ to make another measurement.

This seemingly impossible task can be done if Al-
ice and Bob shares a pair of entangled electrons 
beforehand (can be the entangled state described 
previously). Alice just have to make a joint meas-
urement of her two electrons (one of which has 
the unknown quantum state, the other one is part 
of the entangled pair) and tell Bob which state it 
is. Then Bob will perform some local operation to 
his electron according to what Alice gets. In this 
process, the original entanglement is destroyed 
and the electron which Bob possesses now has 
the unknown quantum state! Moreover, the two 
electrons that Alice has will now be entangled. 
The details are fairly technical. If you wish to 
know more, you are welcome to read the original 
seminal paper [3] or look up on Wikipedia [5]. 
Quantum teleportation has already been realised 
experimently. Last year, a group of scientists from 
China managed to achieve quantum teleportation 
over a free space of 16km [2]. 

Quantum entanglement and teleportation form a 
central part of quantum information and quan-
tum computation, which is an interdisciplinary 
field that draws from mathematics, physics and 
computer science, and one of the fastest growing 
area of research. If you are interested, you may 
consider joining it!

Largest Prime that is the sum of three
consecutive square numbers: 4 + 9 + 16 = 29. 29
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Is  teleportation more than Science Fiction?
Philipp Legner, NASA
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How Electrons Spin
Natasha Kudryashova, Darwin College

I t is almost impossible to construct a visual 
model for the microworld using analogies to 
macroscopic phenomena. The classical laws 

of physics governing the macroworld fail on the 
microscale, which is subject to quantum me-
chanical equations. For quantum particles, such 
as electrons, the two mutually exclusive classical 
concepts of wave and particle are complementary, 
resulting in a corpuscular-wave dualism of their 
properties. In addition, quantum particles, unlike 
macroscopic objects, only exist in discrete states 
characterised by a set of quantum numbers. For 
an elementary particle, spin is a part of its quantum 
state and is, therefore, a fundamental property.   

According to the “macroscopic” view, spin should 
be associated with self-rotation of the particle on 
its axis. Though the quantum spin does represent 
an intrinsic angular moment it is not straightfor-
ward to imagine the corresponding rotation in 
view of the corpuscular-wave dualism. The con-
figuration space for the quantum spin is very dif-
ferent from that of a spinning top, which visualiz-
es classical self-rotation. Unlike classical spinning 
tops, elementary particles of a given kind always 
have the same spin, which is their fundamental 
property (like mass or charge), and cannot there-
fore “self-rotate” any faster or slower. Associated 
with self-rotation intrinsic degree of freedom is 
the spin direction (also referred to as spin), with 
the component of the spin along any direction 
taking only certain allowed values, i.e. being 
quantised.  For an electron, projection of its spin 
of 1�2 (in “quantum” units of the reduced Plank 
constant h�2π), can acquire only two values: 1�2 
and −1�2.  

Furthermore, the position and momentum that 
uniquely define the angular momentum for a 
rotating macroscopic object cannot be specified 
simultaneously on the microscale by the Heisen-
berg principle, giving rise to probabilistic descrip-
tion of elementary particles. The statistics that 
the elementary particles obey are in turn fully 
determined by their quantum spin. For an elec-
tron, half-integer spin invokes the Pauli exclusion 
principle, which states no two electrons can have 
identical quantum numbers; this is a fundamental 
principle that underlies the structure of the peri-
odic table.  

What is Quantum Spin?
Historically, spin was introduced by Pauli as a 
“classically non-describable two-valuedness”, to 
specify uniquely the quantum state of an electron 
[1]. The first experimental evidence that spin is 
real dates back to the beginning of the 20th centu-
ry, when Stern and Gerlach observed unexpected 
splitting of spectral lines [2], which had not been 
interpreted properly until Pauli put forward the 
non-relativistic quantum mechanical theory of 
spin [3].   

In 1928, Dirac [4] proposed his famous relativis-
tic quantum mechanical equation for the electron 
where quantum spin appeared to be an essential 
part of the theory, as well as its inevitable conse-
quence. Dirac showed that spin is essential to the 
relativistic wave equation, and that the proposed 
description of elementary particles with spin 1�2 
is consistent with the principles of both quantum 

Sum of the first four squares. Largest number such
that all smaller numbers coprime to it are prime.
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mechanics and special relativity. The Dirac equa-
tion can also approximately describe protons and 
neutrons, which are not elementary particles, but 
have spin of 1�2. Since then, great experimental 
evidence has proven Dirac’s theory correct. 

The most spectacular triumph of Dirac’s theory 
was the discovery of positively charged particles 
with the mass of an electron (known as positrons). 
These were predicted by the Dirac equation, 
which requires existence of negative energy and 
density solutions.

It is well established that electron spin is neither 
the result of quantum mechanics, nor relativity 
[5]. Many have attempted to obtain spin equa-
tions as a classical limit of the Dirac equation, but 
different classical equations are derived according 
to the performance of the limits [6]. Numerous at-
tempts to employ “macroscopic” ideas of rotation 
similar to a spinning top have also failed, as they 
are not consistent with the Dirac equations.

Trembling Electrons
A visual picture of the quantum spin, which is dif-
ferent from a classical spinning top, was proposed 
by Schrödinger [7], one of the fathers of the quan-
tum theory.  Having analysed the wave packet 

 A plaque in Frankfurt, commemorating the 
Stern - Gerlach experiment. Stern was awarded 
the Nobel Prize in Physics in 1943.  Frank Behnsen

 In 1940, Paul Dirac (top) wrote an article for Eureka 
explaining  Quantum Mechanics. He shared the 

1933 Nobel Prize with Erwin Schrödinger (bottom).

A centered triangular, pentagonal and decagonal
number. A Mersenne, lucky and supersingular prime.
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solution to the relativistic Dirac equation for elec-
trons in free space, Schrödinger showed that the 
instantaneous velocity of an electron equals the 
speed of light c, in contradiction to the fact that 
the observed speed of a massive particle, such as 
an electron, is always less than c. To resolve this 
apparent contradiction, Schrödinger proposed 
existence of rapid local “trembling” motion, with 
fluctuation at the speed of light of the position of 
an electron around the median with a circular fre-
quency 2mc2�h where m is the mass of electron, 
c is the speed of light and h the Plank constant. 
Then, the observed velocity of  an electron is an 
average determined by measuring  the electron’s 
position over a small time interval [8]. This heli-
cal motion, named by Schrödinger the Zitterbe-
wegung, provides an intuitive picture of the spin 
of electrons being its orbital angular momentum. 
Up to now, the Zitterbewegung is the only model 
of quantum spin that is consistent with the Dirac 
equation. 

It is generally believed that the Zitterbewegung 
arises from interference of solutions to the Dirac 
equation with positive and negative energies and 
is a natural consequence of the corpuscular-wave 
dualism. By the Heisenberg principle, the posi-
tion and the momentum of the electron cannot be 
specified simultaneously, giving rise to a Zitterbe-
wegung.  However, in order to get a visual picture, 
expectation values of corresponding quantum 
mechanical operators with wave packets are to 
be taken.  If they are taken between the positive 
(or negative) energies only, the Zitterbewegung is 
well known to disappear.

  Hydrogen wave functions of the electron in 
different quantum states.
 Schematic picture of a trembling motion.

32 Ninth Happy Humber. 11 + 22 + 33 = 32. Sum of
the totient functions of the first ten integers.
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The Zitterbewegung: 
Hypothesis or Reality?
Despite being predicted almost 80 years ago, the 
Zitterbewegung still remains very theoretical and 
has not been observed for the very system it was 
predicted for: a free relativistic electron. The rea-
sons are that the system requires an extremely 
high frequency (1021 Hz), and an extremely 
high degree of localization in space (10–13 m).  
However, the Zitterbewegung is not entirely hy-
pothetical. It is potentially observable in the non-
relativistic limit of the Dirac equation using, for 
instance, two-dimensional carbon sheets known 
as graphene [10, 11].

In addition, for heavier particles under special 
conditions emulating relativistic conditions for 
a Dirac electron, the Zitterbewegung can be ob-
served at much lower frequencies. Recently, the 
Zitterbewegung was simulated for photons in 
a two-dimensional photonic crystal [13] and fi-
nally observed for ions and ultracold atoms [12, 
14], thus providing support for Schrödinger’s pic-
ture of the quantum spin. However, whilst these 
experiments and numerical simulations with 
heavier particles do confirm the Zitterbewegung 
behaviour predicted mathematically, they do not 
provide a firm proof that electrons undergoes Zit-
terbewegung. Therefore, the ultimate test of the 
Zitterbewegung for a free electron is still to come.
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News from the 
Beginning of the World
Sophie Dundovic, St John’s College

M any academic disciplines spend a lot of 
time trying to predict the future and 
understand the past, yet the question 

remains: why are we here now? It has long been 
known that the physical constants which govern 
our existence fall within an extremely narrow 
band which would allow intelligent life to exist. 
Why this is has proven to be a topic of serious de-
bate throughout the last century. 

The Anthropic Principle states that we should not 
be alarmed by this lucky coincidence. Rather if 
the conditions were not right for conscious ob-
servers to exist, the conditions themselves would 
not be observed. Thus it is no coincidence that we 
find ourselves living at a time in space when it is 
possible for us to survive.

Relative to the age of our universe it was not long 
ago that we thought the world was flat. (Contrary 
to popular belief it was not Columbus who first 
refuted this claim; Hellenistic Astronomy estab-
lished the sphericity of the earth as early as the 
3rd century BC.) The early Astronomers and 
Mathematicians often developed radical ideas 
which have since been accepted as conventional 
wisdom. Thus whilst the theories at the forefront 
of cosmological research may seem counter in-
tuitive today, they may well be tomorrow’s reality.   
We have discovered that Earth is in fact not the 
centre of the Universe, that our galaxy is merely 
a small part of what we know to exist, but what 
about everything we don’t know exists?

With advances in Quantum Field Theory acceler-
ating all the time, Hugh Everett’s Many Worlds 

Interpretation (MWI) is constantly provoking dis-
cussion. Of particular interest is its importance in 
the Multiverse Theory, advocated by Max Teg-
mark.

Is our Universe a Multiverse?
Assuming infinite space, which is much easier to 
envisage than finite space when you think about 
the boundary, as well as ergodic matter distribu-
tion, the Level I Multiverse predicts regions ‘be-
yond our cosmic horizon’; that is regions of space 
which we are unable to observe. At present 42 bil-
lion light years is the farthest distance that we can 
observe, since that is the distance that light has 
been able to travel since the Big Bang. The Level I 
Multiverse is governed by the same laws of phys-
ics as the Universe we know, yet with different ini-
tial conditions.  

The Level II Multiverse assumes that chaotic in-
flation occurred and asserts the existence of other 
post inflation bubbles such as our own universe 
which have the same fundamental physical equa-
tions but different initial conditions, physical con-
stants, elementary particles and dimensionality 
as a result of chaotic inflation induced quantum 
fluctuations.

In a Level III Multiverse, MWI comes into play.  
Essentially, every possible outcome of a random 
quantum event does occur. But if each decision 
a person makes is just a random quantum pro-
cess undergone by the neurons in the brain then 
the Multiverse theory asserts that there should be 
an infinity of different histories all playing out at 

Sum of the first five triangular numbers. Number of 
different hexominoes. Highly Cototient Number. 35
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once, although perhaps in a different space-time.  
The further argument that if there are an infinite 
number of universes then there must be one at 
least which contains someone with your name 
your memories and your appearance seems weak.   
As Jesús Mosterín elegantly wrote,

“An infinity does not imply at all that any ar-
rangement is present or repeated. [...] The 
assumption that all possible worlds are real-
ised in an infinite universe is equivalent to 
the assertion that any infinite set of numbers 
contains all numbers (or at least all Gödel 
numbers of the [defining] sequences), which 
is obviously false.”

A Level III Multiverse is not falsifiable. Further-
more it places a dangerously strong importance 
on theories working on the observer. This could 
be criticised as venturing away from the rigour to 
which science seeks to adhere. 

Finally the existence of a Level IV Multiverse, 
which would consist of everything that exists, 
rests on two major assumptions, those being 
mathematical reality implying physical reality, 
and that the physical world is a mathematical 

structure. The existence of each level of Multi-
verses also depends upon the existence of the pre-
vious level.

Solving all Mysteries of Life
If Many Worlds is to be believed and were these 
assumptions to hold true then an “infinitely intel-
ligent” mathematician should be able to compute 
equations to solve all of the mysteries of life and 
the universe. Not only that, but compute the fu-
tures of everyone and everything.

This would make Probability Theory, which is ar-
guably one of the most useful tools available to 
mathematicians, superfluous.  Yet the implausi-
bility of the Level III Multiverse would void this. 
As every mathematician knows, if you start with 
wrong assumptions, you can prove that  2 + 2 = 3.

It is admirable to have unfaltering faith in Mathe-
matics, yet this is not a discipline built upon spec-
ulation and, whilst the fundamental belief that we 
can explain the physical world through a series 
of equations may be valid, radical interpretations 
of this idea can be misleading. The idea that any 

The Galactic Centre Region
NASA, ESA, SSC, CXC, STScI

NASA, ESA, T. Megeath (University of Toledo), M. Robberto (STScI)



37Maximum number of 5th powers needed to sum to 
any number. Lucky, irregular, unique and cuban prime. 37

individual’s actions could be predicted with to-
tal accuracy is not advocated by mathematicians 
seeking a TOE.  It results again from trying to use 
Quantum Theory to observe the observer.

The Missing Link…
There is a missing link at the top; we have Quan-
tum Field Theory to describe atoms, waves and 
particles, the smallest known matter and General 
Relativity to describe gravitation on a very large 
scale.  Whilst they are incompatible with one an-
other both theories are harmonious with the idea 
of a Multiverse. 

It would be naive to think that simply because we 
cannot see beyond 42 billion light years that noth-
ing exists past that point. In any case if there are 
infinitely many particles in space then space itself 
must be infinite. However space being infinite 
does not imply the existence of a Multiverse.  

Perhaps we were a little ahead of ourselves in la-
belling the universe as we have done – with the 
prefix implying that it is alone, however it’s defini-
tion is  ‘All existing matter and space considered 

as a whole; the cosmos.’ Other variants include 
‘everything that exists.’  Thus if the Multiverse 
were to be proven we would have to revise some 
definitions.     
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Painting with Pixels
Martin Kleppmann, Corpus Christi Alumni
Alexander Hess, Universität Bonn

Alexander Hess uses numbers and mathematical structures to create digital art. His pictures are 
kaleidoscopic dreams filled with expressive colours and mysteriously intricate curves.

Throughout the ages, technical progress 
and the spirit of the age have been highly 
influential on the art of the period. Artists 

have always been inspired by new techniques and 
pigments, just as composers have been inspired 
by new instruments, or poets and writers by new 
developments in language. Hess’s digital art is di-
rectly wired to the heartbeat of our time.

The imaging technique which Hess specially 
developed has only become feasible through 
state-of-the-art computing. He defines his visual 
creations through the complicated languages 
of computer programs: these programs are very 
carefully thought out, because once a picture has 
been generated, Hess will not modify it by hand. 
In other words, every picture is already fully con-
tained in coded form in its program, and each 
picture requires a slightly different program. Hess 
paints in the abstract domain of computer in-
structions: numbers are his colours, mathematical 
operations are his brush strokes.

The pictures are not merely graphic toy applica-
tions of mathematics; that would be just as inap-
propriate as calling Damien Hirst’s formaldehyde 
works “applied chemistry”. Artistic expression has 
foremost importance for Hess, and mathematics 
is his medium of expression. “Some people con-
sider my pictures to be somehow inferior, because 
they were painted by a computer program rather 
than a human hand”, he says. “That is obviously 
nonsense. I don’t mind whether an artist uses 

acrylic or oil paints, for instance. Every artist 
should use the media which work best for him. I 
am both artist and mathematician, and I cannot 
separate those identities.”

And Hess skilfully applies the special qualities 
of his digital means of expression. Today’s huge 
computing facilities lend themselves to works of 
immense complexity. But rather than being domi-
nated by this complexity and letting his pictures 
drift off into chaos, Hess chooses to restrain his 
computational daemons and let them work in the 
details. Many of his ideas are based on abstract, 
widely arcing curve motifs. The lasting fascination 
of his pictures often stems from the multilayered 
details: subtle shadings of colour; delicate and un-
expected twists in the lines; curves which may ex-
ist or may only be imagined – and you are never 
quite sure.

As viewer, however, you do not need to know 
anything about these digital goings-on. You can 
just relax and regard Hess’s visions like cloud for-
mations from other worlds: sometimes you think 
you can see some concrete object or movement, 
and at other times they are simply a pleasing play 
of abstract forms and colours. Sometimes the title 
gives a hint at what Hess himself sees in an image; 
however that is not to say that a different viewer 
cannot gain completely different impressions 
from a look through the window into this artist’s 
world.

Magic number of an order 3 magic hexagon.
Number of slots in American Roulette.
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Firework
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of steps in a Buchan novel and in a Hitchcock film. 39



40

Ardeur

40 Only number whose letters are in alphabetical order. 
Octagonal Number. Number of days in Lent.



41

The finished picture is composed of several abstract layers. In each of these layers simple geo-
metric figures – such as lines, triangles, and circles – are drawn over each other millions of 
times. This is done by fixing one such object in each layer and deforming it continuously. Each 
of these figures has strong contours, but superimposing many similar pictures gives the im-
pression of a very smooth pattern.

The colour of every single pixel in the final picture is calculated from these abstract layers. The 
method of assigning RGB-values from the layers can be defined in any way, and the methods 
vary between different pictures. The choice of function that assigns the colours has a profound 
effect on the final picture: the user decides which aspects of the picture are accentuated, e.g. by 
creating contrasts and choosing different colours.

La naissance de l'univers

The polynomial n2 + n + 41 gives primes for |n| < 40. Thus
41 is an Euler lucky number of and the largest such prime. 41
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How to teach Physics 
to Mathematicians
Zhuo Min ‘Harold’ Lim, St John’s College

M athematics and physics are close intel-
lectual cousins. Historically, the devel-
opment of both disciplines have been 

intimately tied together. For much of the late 18th 
century, and continuing through the 19th century 
to the early 20th century, the need to formulate 
physical theories and to perform calculations in 
physics was a major driving force in advances in 
such areas of mathematics as complex analysis, 
Fourier analysis, vector algebra and calculus, or-
dinary and partial differential equations, integral 
equations, and the calculus of variations. It may 
indeed be observed that many giants of this era 
(Euler, Gauss, Hamilton, Lagrange, Jacobi, Poin-
caré, Stokes, etc) were simultaneously great math-
ematicians and great physicists, having made sig-
nificant contributions to both disciplines.

The emergence of the notion of mathematical rig-
our in the 19th century, along with the advent of 
the axiomatic method in the early 20th century, 
gave modern pure mathematics its present form. 
Mathematical writing is now expected to be pre-
cise; that is, definitions, results and proofs are 
supposed to be stated clearly and unambiguously 
(in practice, mathematical discourse is hardly 
ever that formal, to convey the ideas across more 
easily and to avoid boring the reader). There also 
emerged a trend towards abstraction and gener-
alisation in mathematics: mathematicians turned 
to generalising older results for their own sake, 
rather than forging new mathematical tools for 
use in physics.

As observed by many people ([1] and [2]), this 
led to a kind of communication breakdown be-

tween the two camps. The situation has improved 
markedly in recent years, with mathematicians 
now collaborating with physicists working on 
the frontiers of fundamental theoretical physics 
(string theory, high energy physics, cosmology, 
etc). The need to formulate and solve problems in 
these areas has been a major driving force in the 
development of many branches of mathematics.

The Problem
Nevertheless, it may be observed that, in contrast 
to the situation a century ago, physics is no longer 
an important aspect of contemporary higher edu-
cation in mathematics. Not many aspiring math-
ematicians (here, as in the rest of the essay, I use 
the term “mathematician” to refer only to pure 
mathematicians) are likely to take more than one 
or two courses in physics throughout the duration 
of his education. The pressure to learn the many 
different subjects that comprise the central core 
of mathematics, along with the technical and spe-
cialised fields needed for one’s research, means 
that anything not considered essential (such as 
physics) will be given at best a perfunctory treat-
ment.

Many more mathematicians will, however, end up 
working in subjects of great interest to theoreti-
cal physicists; for example, string theory and gen-
eral relativity have made extensive use of mod-
ern geometry, while the representation theory 
of Lie groups has been very fruitful in illuminat-
ing quantum mechanics and field theory. Other 
mathematicians may go into other mathemati-
cal disciplines intimately tied to other sciences 

Answer to the Ultimate Question of Life, the Universe, 
and Everything. Magic number in a 3×3×3 magic cube.
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or industrial applications (nonlinear dynamics, 
inverse problems, free boundary value problems, 
percolation theory, etc). For these folks, a knowl-
edge of physics, or at least a familiarity with physi-
cal thinking, which are hardly picked up during 
a typical undergraduate career in mathematics, 
would be an added bonus: physical considera-
tions may help inspire new methods and results, 
and the ability to communicate with physicists (or 
scientists in general) could lead to many opportu-
nities for collaborative work.

However, working mathematicians would no 
doubt bemoan the fact that physics is difficult 
to pick up. Both subjects have matured indepen-
dently of each other over the decades, and one 
of the side-effects is that mathematicians find it 
extremely hard to adjust their thinking to that of 
a physicist. Also, mathematicians and physicists 
have different expectations in learning physics. 
These will be considered in greater detail below.

We are thus led to consider the following problem:

How can some basic physical intuition be 
imparted, and some knowledge of physics be 
taught to mathematicians, efficiently? Spe-
cifically, how should one present physics for 
mathematicians, or design physics courses 
tailored to the mathematicians’ needs and 
tastes?

Here, when using the term “mathematician” I am 
always referring to pure mathematicians who 
have completed a basic education in higher pure 
mathematics, and already possess a facility for 
abstract reasoning, but who have had very little 
training in physics. The point is to leverage this 
mathematical maturity so that the essentials of 
bare physics can be taught and learnt quickly. 
More importantly,

The goal is emphatically not to train math-
ematicians to become physicists, but to give 
them a “feel” of the practice of theoretical 
physics, so that they may communicate and 
collaborate better with physicists.

The Programme of 
Applying Mathematics
In the practice of any scientific discipline in 
which mathematics plays a key role, the process 
of attacking a problem can usually be divided into 
three stages. They are detailed below, along with 

a few comments about how they might fit into 
teaching physics to mathematicians.

1. Creating a mathematical model

This is the stage in which a mathematical descrip-
tion of the phenomenon at hand is derived and 
written down. Very often, the resulting model is 
not an exact description of the phenomenon, but 
is simplified so that it is still a good approxima-
tion, but is mathematically tractable.

Mathematicians are likely to encounter trouble 
with this stage, especially after so many years of 
rigorous training in the formalised reasoning of 
pure mathematics. Modelling is very much more 
of an art rather than a science, and one has to use 
physical intuition to arrive at the equations and 
to make useful simplifications. Since there are no 
hard-and-fast rules to modelling, it is natural for 
one to find another’s intuition difficult to follow 
or, worse, unconvincing.

2. Solving the problem mathematically

One then attempts to solve the model as a pure-
ly mathematical problem. Mathematicians will 
probably find this rather straightforward, once 
they learn the tricks of the trade.

3. Comparing the results to experimental data

One needs to conduct an experiment and meas-
ure quantities which can be compared with the 
results obtained. The model is useful if and only 
if its predictions (i.e. results obtained in the previ-
ous stage) are consistent with the data obtained in 
the experiments.

Naturally, mathematicians would have negligi-
ble training in this stage. However, this stage lies 
squarely in the domain of the physicist: it will 
take far too much time to train mathematicians in 
the techniques of experimentation, and, moreo-
ver, experimentation is obviously not the forté of 
mathematicians. One cannot expect mathemati-
cians to make any useful contribution to the prac-
tice of this stage.

As an analogy, consider the teaching of the “math-
ematical methods of physics” to physics students. 
Much basic mathematics is omitted from such a 
curriculum, chief among them the techniques 
of rigorous proof. It is sufficient that physics 
students be able to use these “tools” to perform 
calculations, and it is unrealistic and unnecessary 
to expect them to be able also to engage in pure 

Lowest atomic number of any element without stable 
isotopes. Smallest prime that is not a Chen prime.
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mathematics. Similarly, and recalling our objec-
tives outlined above, it is enough for mathemati-
cians to develop a feel for physical thinking, and 
it is unrealistic and unnecessary to expect them to 
engage in experimental physics.

Consequently, experimentation is almost com-
pletely irrelevant to any course of physics de-
signed for mathematicians.

Physics Courses are Unsuit-
able for Mathematicians
There may be many possible reasons why mathe-
maticians find it hard to learn physics from physi-
cists, physics books and physics courses. Here I will 
detail what I believe are the most important ones.

1. Differences in expectations

The fundamental reason is the difference in aims 
between the two subjects. Physics aims to give a 
mechanistic description of nature, and, to physi-
cists, understanding is the ability to explain a 
physical phenomenon or process by more funda-
mental physical principles. Mathematics is viewed 
merely as a tool for expressing relations between 
observable quantities: the aim is solely to obtain a 
formula that can be used to compare theoretical 
predictions and experimental results. In particu-
lar, it does not matter at all if all the intermedi-
ate steps are un-rigorous (invoking assumptions 
without stating them) or incorrect (using a for-
mula or relation that is known to be mathemati-
cally wrong) [4]. The answer is deemed to be valid 
as long as it accurately predicts experimental data 

(and, if the physicist in question is particularly 
sloppy, so is the method).

To a mathematician, there is something funda-
mentally distasteful about such a pragmatic use 
(abuse?) of mathematics. The mathematician 
strives instead for a logical understanding of the 
theory, and understanding is the ability to derive 
the result from the assumptions or hypothesis 
using indisputable rigorous argument. Unfortu-
nately for them, physicists do not work in such a 
fashion, nor do they present their work in such a 
framework.

2. The lack of a clear delineation between the 
three stages of applied mathematics

This is likely to cause great difficulty for mathema-
ticians in following physical reasoning. As mentioned 
above, modelling is conducted using heuristics 
such as physical intuition, instead of rigorous 
rules; as such, it may be the case that one might 
not consider another’s modelling convincing.

Unfortunately, all too often the hapless student or 
reader, having been unconvinced by some stage of 
the modelling, would be stuck at this stage. This is 
a great shame because, even if one does not agree 
with the modelling, one can still proceed to solve 
the problem mathematically. There should be 
something left for the unconvinced mathemati-
cian to do. Parts which the mathematician should 
take on faith (i.e. the modelling stage), for exam-
ple, as axioms, should be clearly separated from 
the parts which the mathematicians should work 
with (i.e. the mathematics stage).

Moving calorimeter in the
ATLAS cavern at CERN
CERN, Geneva

Number of derangements of 5 items. Largest number
of regions the plane can be divided into by 7 circles.
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3. The lack of use of clear mathematical concepts

Physicists do not always use the most efficient 
language to convey physics. Mathematics has un-
dergone tremendous progress since the early 18th 
century, yet the physicists’ use of mathematics 
seems to be stuck in that era.

For example, in some (modern) treatments of 
general relativity, one still encounters the outdat-
ed concepts of “covariant tensors” and “contravar-
iant tensors”, defined as quantities that transform 
according to a certain rule, and make students or 
readers suffer through the practice of index shuf-
fling. It would be much easier on the mathemati-
cians to consider instead tensor products of the 
tangent and cotangent bundles; index shuffling is 
then a trivial consequence of this. Moreover, it be-
comes clear that “scalars” (such as the Ricci curva-
ture) are smooth functions defined on the mani-
fold of space-time and are trivially independent 
of the coordinate chart chosen, while “tensors” 
(such as the Riemann curvature tensor) transform 
correctly by taking suitable inner products with a 
basis of local vector fields.

As another example, I quote from Landau and Lif-
shitz’s Mechanics [3],

It should be mentioned that this formulation 
of the principle of least action is not always 
valid for the entire path of the system, but 
only for any sufficiently short segment of the 
path. The integral (2.1) for the entire path 
must have an extremum, but not necessarily 
a minimum.

This has the potential to cause great confusion: It 
seems to say, “whatever we have done so far isn’t 
strictly true”, but does not go into further detail 
why. Of course, it would have been far less con-
fusing to use a little advanced mathematics, by 
stating that the path of the Lagrangian system is a 
geodesic on the phase space, and that locally (i.e. 
in an open neighbourhood of a point) geodesics 
are length-minimizing curves, but this is not true 
globally (for example, by considering great circles 
on the surface of a sphere).

Of course, in lectures designed for or books writ-
ten for physicists, one will have to restrict the 
mathematical level so that the target audience 
could possibly understand them. However, this 
usually leads to a more fuzzy and less rigorous 
discourse. When presenting to mathematicians, 
the use of such mathematical concepts will illumi-

nate the discussion considerably; not to use them 
would be inefficient.

Guidelines
Subject to the above discussion, I will now proceed 
to present my opinions on how physics could best 
be presented to mathematicians (in both lectures 
and books), so as to convey to them some notion 
of physical thinking (recall our goals above).

1. Clearly separate the modelling stage and 
mathematics stage. And ensure that, when 
solving the model mathematically, the use 
of mathematics is careful and rigorous: any 
results must follow from the governing 
equations of the model via a finite sequence 
of logically connected steps.

2. Use abstract mathematical concepts where 
they can illuminate the discussion.

3. Spend minimal time on experimental results. 
Seriously, mathematicians just aren’t inter-
ested in that.

I would, in addition, envision such a course not 
so much as conveying knowledge of physics, as 
letting mathematicians try their hand at analysing 
some physically-motivated toy models. Such an 
analysis is necessarily mathematical.

It would, of course, be an added bonus if the 
mathematicians involved could be encouraged to 
try their hand at coming up with models. How-
ever, it should be remembered that modelling is 
emphatically not part of mathematics, and that 
mathematicians trained in the formalized reason-
ing of their discipline would definitely have to 
adjust their thinking. It is, as they say, difficult to 
teach an old dog new tricks.
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… the

  Normal
Distribution

is the underlying pattern of almost
everything in nature: from human

heights to beans in the game 
Quninqunx on the right.

The size of the

        dots in the  Ulam Spiral represents the number of

     divisors of each number.

Largest number of cubes that cannot 
tile a cube. Atomic number of silver. 47

designed by
Philipp Legner



48

A Double Spiral can be created as the shadow of a spherical spiral.

The

Dodecaplex
is the projection of a

4-dimensional polyhedron.
The

Poincaré Disk
is one representation of the hyperbolic plane.
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of Ptolemaic constellations. 
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SHAPES
AND

GRAPHS

Knots
are not only useful but give rise

to an exciting mathematical theory.

Soap Bubbles
minimise the volume of a given surface area.

The

Necker Cube
is one of the impossible shapes M C Escher 

liked to use in his paintings. Multiplying the period of 1/49 by integers 
coprime to 49 permutes the digits. 49
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FUNCTIONS
AND

FRACTALS

Boy’s Surface
is only one of many interesting 
and beautiful mathematical sur-
faces, that can be created in
elaborate computer applications.

The

Menger Sponge
a 3-dimensional fractal

Mandelbrot Set
is one of the most famous
fractals of all times.50 Smallest number that can be written as the 

sum of two squares in two distinct ways.
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Stephen Wolfram’s 

Mathematica
has changed the way we create and
think abut mathematical graphics.

Dini’s Surface
        has a constant

negative curvature.

Waves
are one of the most
important concepts in
applied mathematics.

Fractals
have found a fantastic popularity
in recreational mathematics.

Number of ways to draw non-intersecting lines 
between six points on the boundary of a  circle. 51
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The Liar Paradox
Prof. Keith Devlin, Stanford University

The Liar Paradox, generally credited to the 
Greek philosopher Epimenides, asks us to 
consider the individual who stands up and 

says, “This assertion is false.” Is this assertion true 
or false? 

There are two possibilities: the speaker is either 
telling the truth or is lying. Let’s look at each pos-
sibility in turn. To clarify the analysis, let L stand 
for the sentence uttered. 

If the speaker is telling the truth, then the asser-
tion must be true. According to what L says, that 
means that the speaker is uttering a falsehood. In 
other words, the assertion is a falsehood. But that 
can’t be the case, since we started out by suppos-
ing that the speaker was telling the truth. So this 
case is contradictory.

Now let’s look at the case where the speaker is ly-
ing. That means that the assertion is false. Accord-
ing to what L says, that means that the speaker 
must be telling the truth. Again we are in a con-
tradictory situation.

It seems to be an inescapable paradox: if the 
speaker is telling the truth, then he or she is lying; 
if the speaker is lying, then he or she is telling the 
truth.

Until relatively recently, there was no known so-
lution to this paradox. A key feature of the co-
nundrum seems to be its self-referential nature. 
Certainly, the argument that leads to the paradox 
makes heavy use of the fact that the utterance of 
L refers to that very utterance.  But self-reference 
alone cannot be the culprit. There is nothing in-

herently wrong with self-reference. It happens all 
the time, and often in polite company. People fre-
quently talk about themselves. A group of people 
in conversation at a dinner party can talk about 
the dinner party, making such remarks as, “This 
is a very interesting conversation.” And how about 
the self-referential sentence “This sentence has 
exactly six words.” Attempts to resolve the para-
dox by analysing self-referential statements did 
not succeed.

Equally unsuccessful were approaches that con-
centrated on the notion of truth and falsity, an-
other key ingredient of the paradox. One such at-
tempt at a resolution was to suppose that there is 
a third possibility besides the assertion being true 
or false: it could be ‘undetermined’. But the para-
dox arises again like the Phoenix from the ashes 
when someone stands up and says, “This assertion 
is false or undetermined.”

Or perhaps the paradox depends on the particular 
combination of self-reference and a claim about 
truth and falsity. Certainly, there was no shortage 
of logicians who thought this was the case.

From America to Australia
Finally, in 1986, the American logicians Jon Bar-
wise and John Etchemendy provided a solution. 
The cause of the difficulty, it turned out, was an 
unacknowledged, but critical, parameter – specif-
ically, a context. Once you take proper account of 
the context in which the Liar sentence is uttered, 
there is no more  a paradox than there is a genuine 
conflict between the American who thinks that 

Number of cards in one deck. Bell number.
Untouchable and noncototient number.
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June is a summer month and the Australian who 
thinks June is a winter month. Both individuals 
are correct in the context in which they hold their 
respective beliefs, America on the one hand, Aus-
tralia on the other. 

Before I present Barwise and Etchemendy’s solu-
tion, I should point out that the Liar Paradox is 
not about sentences but utterances (of sentences). 
On its own, a sentence is neither true nor false. 
Truth and falsity arise only when someone utters 
the sentence (or writes it, or otherwise endows it 
with meaning). Thus, presentations of the para-
dox that focus on the sentence “This sentence is 
false” confuse a string of words with the meaning 
those words convey when someone utters them. 
That is why I used the word assertion when I stat-
ed the paradox.

Everyone knows implicitly that the circumstances 
in which a sentence is uttered affect the meaning 
in a fundamental way. For instance, when uttered 
by a person with the appropriate authority vested 
by society, the sentence “I now declare you man 
and wife” has significant ramifications for the two 
recipients. When the same sentence is spoken by 
an actor in a movie, those ramifications do not 
follow.

There is an entire branch of mathematics that in-
vestigates the way context affects meaning (and 
hence truth) in mathematics, called Model The-
ory. The notation model theorists use to indicate 
that a sentence σ is true when interpreted in the 
context M is

M ⊧ σ.

For example, if Z denotes the integers, then 

Z ⊧ (∀x)(∀y)[x × y = y × x],

but if M denotes the domain of all 3 × 3 integer 
matrices then

M ⊧ ¬(∀x)(∀y)[x × y = y × x].

The formula is the same in both cases, (∀x)(∀y)[x 
× y = y × x], the commutative law for multiplica-
tion. Whether it is true or false depends on what 
it is being applied to (i.e. in what mathematical 
structure it is being interpreted). Absent an ap-
propriate context, the commutative law makes no 
claim, and hence is neither true nor false. 

When you apply these considerations to the Liar 
Paradox, it simply melts away. Here is the argu-
ment.

Person a stands up and says, “This assertion is 
false”. As before, let L denote the sentence uttered. 
The first question to ask is what exactly the speaker 
refers to by that phrase “This assertion.” It cannot 
be the sentence L itself. As we noted above, sen-
tences are just strings of symbols, and a string of 
symbols is neither true nor false, it’s just a string 
of symbols. Rather what the speaker is referring 
to must be the assertion (or claim) being made 
by uttering the sentence. Let’s call that assertion 
p (for proposition). In other words, a’s utterance 
of the phrase “This assertion” refers to the claim p.

It follows that, in uttering the sentence “This as-
sertion is false”, a is making the claim ‘p is false’. 
But we already used p itself to denote the claim 
made by a. Hence p and ‘p is false’ must be one 
and the same. I'll write this as an equation and 
give it a number to refer to later:

 p = [p is false]. (1)

Now, the claim p made by a’s utterance concerns 
the truth of p. But, as we have observed already, if 

The background is in front of the horse behind the  
trees: a paradoxical work by Surrealist René Matisse.
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we want to be able to decide whether a particular 
claim is true or false, we need to be careful about 
the context in which the claim is made. In other 
words, in making the assertion – which is about 
that very assertion – a must be making implicit 
reference to the context in which the assertion is 
made. Let c denote that context.

Thus, a’s utterance of the phrase “This assertion” 
refers to the claim that p is true in the context c. 
Using the notation of model theory, this can be 
written as c ⊧ p. In other words, p must be the 
same as c ⊧ p, since both are what a refers to by 
uttering the phrase “This assertion”. So we have 
established a second equation:

 p = [c ⊧ p]. (2)

Having sorted out what a is talking about, it’s time 
to see whether a’s assertion is true or false.

Suppose first that a’s assertion is true. In other 
words, p is true. Using formula (2), we can express 
this as
 c ⊧ p. (3)

By formula (1), we can replace p in formula (3) by 
[p is false] to obtain:

 c ⊧ [p is false]. (4)

Now we have a contradiction: formula (3) tells us 
that p is true in the context c and formula (4) tells 
us that p is false in the same context c. Notice that 
there is no question of an America–Australia type 
context difference here to explain the conflict. The 
context is the same in both cases, namely c. The 
contradiction is inescapable, just as if we sud-
denly discovered it was simultaneously summer 
and winter in San Francisco. (Actually, anyone 
who has visited San Francisco in July will know 
that this often seems to be the case, but that is a 
reflection of the strange summer weather there, 
not an issue of logic.) The only possible way out 
of this dilemma is that a’s claim cannot be true, 
since that is the supposition that got us to the con-
tradiction.

So much for the case when we assume that a’s 
claim is true. Now let’s look at the case where a’s 
claim is false. In other words,

p is false.

But wait a minute. What is the context for this 
statement? This question did not arise in the pre-
vious case, since we knew the context for p; it was 

c. But nothing we know provides a context for the 
statement ‘p is false’.

You might feel that c is itself the appropriate con-
text. After all, c is the context in which a makes 
the assertion, and to which the assertion implic-
itly refers. Fair enough, let’s see what happens if 
we do make this assumption. Then

c ⊧ [p is false].

By formula (1), this can be rewritten as

c ⊧ p.

And now we are in the same contradictory situa-
tion as we were in the previous case. On that oc-
casion the conclusion was that a’s claim cannot 
be true. But this time the conclusion is different: 
namely that c cannot be the appropriate context. 
Just as the knowledge that if a person in country 
X says truthfully that June is a winter month leads 
us to conclude that country X is not America, so 
too on this occasion, if a’s claim is false, then we 
can conclude that the context for that claim being 
false cannot be c.

You have to be a bit careful with the above com-
parison with the America–Australia example. c 
is indeed the context for a’s utterance. What is at 
issue is what is the context for making the new 
statement that a’s original utterance is false. What 
the above argument shows is that that context, 
whatever it is, cannot be c.

So, when proper attention is paid to context, the 
Liar Paradox ceases to be a paradox. In saying 
“This assertion is false”, the individual a is mak-
ing a claim that refers (implicitly) to a particular 
context, c, the context in which the sentence is 
uttered. If the claim is true, then it is true in the 
context c, and that leads to a contradiction. So the 
claim must be false. But the context for making 
the observation that the claim is false cannot be 
c, since if it were, then that too leads to a contra-
diction.

In other words, what was previously regarded as 
a paradox has turned into a discovery, or theorem, 
about contexts. A person a who stands up and 
says (in context c), “This assertion is false”, is mak-
ing a false statement. However, that fact that the 
statement is false cannot be asserted in the same 
context c. Admittedly this is a fairly odd conclu-
sion. Then again, the Liar sentence is a pretty odd 
thing for anyone to say.

Number of  coloured squares on a Rubik’s cube. 
Perfect round on a par 72 golf course.
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There is a particular irony about the way the Liar 
Paradox was finally put to rest. The puzzle was 
first formulated by a logician in ancient Greece, at 
the time when the Greeks were starting to develop 
a theory of reasoning and truth (i.e. the theory we 
now call  Logic) that was independent of context. 
And yet more than two thousand years later we 
are  able to recognize that Epimenides’ argument 
is really about the crucial role played by context in 
discussing reasoning and truth. In short, a proper 
analysis of both communication or reasoning 
cannot be carried out without taking account of 
context. The Liar Paradox is not a paradox at all, 
rather the nonsensical outcome of bad mathemat-
ical modeling.

Notes
1. Bertrand Russell’s famous set-theoretical 
paradox about the set of all sets that do not con-
tain themselves was likewise resolved by iden-
tifying an unacknowledged parameter. Russell 
considered the set R = {x | x ∈ x} and reached a 
contradiction by asking whether R ∈ R. Though 
Russell's Paradox destroyed Gottlob Frege’s 

logical magnum opus before it was published, it 
did not take long before the resolution was found, 
by way of a proper axiomatisation of set theory. 
The crucial set-formation axiom says that, given 
any set s and any property P of sets, it is possible 
to form the set {x ∈ s | P(x)}. Frege’s formulation 
omitted reference to the crucial parameter s, and 
thereby opened the door to Russell’s devastating 
example.

2. Barwise and Etchemendy’s solution to the Liar 
Paradox was first described in [1]. For examples 
of the kinds of results that can be obtained when 
the methods of model theory are applied to re-
al-world situations, as opposed to mathematical 
structures (for which the methods were first de-
veloped), see [2].
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M any important advances in mathemat-
ics are made when connections are 
found between seemingly unrelated 

topics. In recent years, one such connection has 
been made between the 
fields of Model Theory and 
Algebraic Geometry, using 
the concept of a Zariski 
structure. A Zariski struc-
ture is a model theoretic 
structure – a set with a 
collection of relations be-
tween its elements. We 
also require some topolog-
ical information about the 
structure. Under certain 
conditions, it can be shown that such a structure 
is very closely related to an algebraic variety – the 
main objects of study of Algebraic Geometry.

In Algebraic Geometry, we study the geometric 
properties of sets of solutions of polynomial equa-
tions over a field. if f1, …, fm are polynomials in n 
variables with coefficients in a field K, sets of the 
form {(x1,…,xn) ∈ Kn : fi(x1,…,xn) = 0 for i = 1,…,m} 
are called algebraic. The algebraic sets in Kn are 
the closed sets of a topology on Kn, called the Zar-
iski topology. Sets which are the intersection of an 

open and a closed set are called constructible, be-
cause they are precisely the sets which can be con-
structed from algebraic sets using Boolean opera-
tions. An algebraic set that is irreducible, that is 

that cannot be written as 
the union of two proper 
closed subsets, is called an 
algebraic variety. We can 
also define a notion of di-
mension for constructible 
sets. If S ⊆ Mk is construct-
ible and irreducible, we de-
fine dim(S) to be the maxi-
mal value of n such that 
there is a chain of proper 
closed irreducible subsets 

of S = Sn ⊋  Sn–1 ⊋ … ⊋ S1 ⊋ S0. The fact that this 
is well defined (i.e. that there is such a maximal 
n, and it is finite) is a consequence of the fact that 
the polynomial ring K[X1,…,Xk] is Noetherian.

Model Theory
Model Theory is the abstract study of mathe-
matical structures. We start with a set M, called 
a structure, with a collection C of subsets of Mn, 
which we think of as relations between elements 
of M, for example, if P ∈ C and (x1,…,xn) ∈ P then 

When Logic
Meets Geometry
Tom Avery, St John’s College

“I began to feel distinctly unhappy about 
the rigor of the original proofs [of the 

theory of surfaces], without losing in the 
least my admiration for the imaginative 

geometric spirit that permeated these 
proofs. I became convinced that the 

whole structure must be done over again 
by purely algebraic methods.”

Oscar Zariski

Maximum determinant of an 8×8 matrix of zeros 
and ones. Sum of the first six triangular numbers.
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we say that x1,…,xn satisfy the relation P, and write 
this as P(x1,…,xn). The relations in C make up the 
“atomic formulae” of M. We define formulae in-
ductively starting from the atomic formulae using 
logical operators. If P ⊆ Mm and Q ⊆ Mn are for-
mulae, then the table on the previous page shows 
how we form new formulae from them; the first 
column gives the formula, and the seconds gives 
the set of elements satisfying it.

The set L of all formulae is called the language of 
M, and the corresponding subsets of Mn (for each 
n) are called the definable sets. Model theory is an 
incredibly powerful tool for describing mathe-
matical structures; there are very few mathemati-
cal objects that cannot be thought of as a model-
theoretic structure.

We call a structure M a topological structure if the 
subsets of Mn defined by atomic formulae are the 
closed sets of a topology on Mn, for each n, and 
the topology is well behaved under certain set 
theoretic operations. In particular, we require that

1. {(x,x) : x ∈ M} ⊆ M2 is closed,
2. Every singleton set is closed,
3. The Cartesian product of two closed sets is 

closed,
4. Permuting the coordinates of a closed set 

gives a closed set,
5. If a ∈ Mm and S ⊆ Mm+n is closed, then 

{x ∈ Mn : (a,x) ∈ S} is closed.

Constructible subsets of a topological structure 
are defined in the same way as for a field – any set 
which is the intersection of an open and a closed 

set. We say a topological structure has “good di-
mension notion” if for every non-empty definable 
set S there is a non-negative integer dim(S), satis-
fying the following:

1. The dimension of a singleton is 0,
2. dim(S1 ∪ S2) = max�dim(S1), dim(S2)�,
3. For constructible irreducible S, if S1 ⊊ S is 

closed, then dim(S1) < dim(S),
4. If S ⊆ Mn is constructible and irreducible, 

and pr : Mn → Mm is a projection map (i.e. 
pr(x1,…,xn) = (xi1,…,xim), where i1,…,im ∈ 
{1,…,n}), then

5. For S ⊆ Mn constructible and irreducible, 
and pr : Mn → Mm a projection map, there 
exists V ⊆ pr(S) open in pr(S) (in the sub-
space topology), with

for every v ∈ V.

A topological structure is Noetherian if for every 
n, if we have a descending chain of closed subsets 
in Mn, S1 ⊇ S2 ⊇ …, then there is some i such that 
Si = Sj for every j ≥ i. Finally, a Zariski structure 
is a Noetherian topological structure with good 
dimension notion, such that for any closed irre-
ducible S ⊆ Mn and projection map pr : Mn → Mm, 
there is a proper closed subset F ⊂  such that 

 � F ⊆ pr(S) (here  denotes the closure 
of pr(S)).

Some of the above definitions might seem some-
what arbitrary, but in fact they have been chosen 
carefully so that Zariski structures behave very 
similarly to algebraic varieties. An algebraic va-
riety is a model theoretic structure with atomic 
formulae defined by finite sets of polynomials 
over the field K. In fact, this makes the variety 
a topological structure, since as noted above the 
algebraic subsets form the closed sets of a topol-
ogy, and the other requirements for a topological 
structure are quite straightforward to check. If we 
define dimension in an algebraic variety as above, 
it is not too difficult to verify that an algebraic va-
riety is in fact a Zariski structure. The main result 
in the theory of Zariski structures so far is the 
classification theorem, which establishes a partial 
converse to this.

Can be written as 111 in base 7.
Leyland number, since 2⁵ + 5² = 57.
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Classification Theorem
Given a one-dimensional essentially uncountable, 
ample, pre-smooth1 Zariski structure C, there is a 
field K, an algebraic curve X over K and a finite-
to-one surjective map

f : C → X

such that the image of a definable set in C is con-
structible, and the pre-image of a constructible set 
in X is definable.

Notice that the map f is only finite-to-one, not 
one-to-one (injective). If it were, then the Zariski 
structure C and algebraic curve X would be exact-
ly isomorphic as Zariski structures. In fact there 
are examples where the map is not one-to-one, 
and so the Zariski structure is not an algebraic 
curve, only a finite cover of one.

The proof of the classification theorem is too long 
to give here in full, but we can at least describe 
some of its interesting features. The most surpris-
ing part of the result is the construction of a field 
– we begin with a purely logical structure (with a 
little bit of topology thrown in) and end up with 
a field, an algebraic object definable within the 
structure. Once the field has been found it is rela-
tively straightforward to construct the curve X.

To construct the field, we must first consider an 
elementary extension *C of C – a much larger 
model theoretic structure which contains C as 
a substructure – and a map π : *C → C called a 
specialisation. We think of *C as containing many 
extra points squeezed in between the points of C, 
and π takes each of these to a point of C which 
is “infinitesimally close” to it. The pre-image of a 
point in C under π is called its infinitesimal neigh-
bourhood. We can use such an extension to formu-
late “non-standard analysis” in our Zariski structure.

1 essential uncountability, ampleness and pre-smoothness are 
technical conditions on the Zariski structure, that serve to 
rule out certain degenerate cases. For the exact definitions, 
see Boris Zilber’s book, “Zariski Geometries”

The next stage is to consider a family of curves 
(i.e. one-dimensional closed sets) in C 2 through 
a point (a,b). Non-standard analysis shows that 
each of these curves is in fact the graph of a bijec-
tion when we restrict it to the infinitesimal neigh-
bourhood of (a,b). We can invert these functions 
and compose them, and in doing so define a new 
family of curves in C 2 through (a,a). Composing 
curves from this new family again gives curves 
through (a,a). There is an equivalence relation 
of tangency between curves through a particular 
point, and the composition of curves preserves 
this relation, so there is a binary operation on the 
set of tangency classes of curves through (a,a). 
In fact this operation defines an abelian group, G, 
which is definable within our Zariski structure.

This process can be repeated, except using G in-
stead of our original structure C. We consider a 
family of curves through (0,0) (where 0 is the 
identity of the group). There are now two opera-
tions on the family of curves: pointwise addition 
of the local functions, and composition as before. 
Both of these preserve tangency, and writing 
composition as multiplication, they define a field 
structure on the set of tangency classes of curves 
through (0,0).

Further Reading
There are many examples of Zariski structures in 
mathematics, the most important being algebra-
ic varieties and compact Riemann surfaces. The 
study of these structures is ongoing, and the idea 
of an analytic Zariski structure, in which the con-
dition that the topology be Noetherian is dropped, 
has received much interest in recent years. If you 
would like to find out more, I suggest Boris Zil-
ber’s book on the subject, “Zariski Geometries”.

Compact Riemann surfaces are examples of Zariski  
structures. These Riemann surfaces correspond to 

ArcSin(z), Log(z), z1/2 and z1/3 (left to right).

Number of stellations of an icosahedron.
Number of orthorhombic space groups. 59Number of commutative semigroups of order 4.

Sum of the first seven Prime numbers.
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Graphs, Groups 
and Topology
Anja Komatar, Queens’ College

A s undergraduates we meet group theory, 
graph theory and topology as distinct 
courses, but there are many ways in which 

these areas interact. The following five examples 
are particularly interesting.

Conjugacy in Sn
Consider a bijection f  from the set {1, 2, …, n} 
back to itself. A neat way of explicitly defining it is 
by drawing a graph with vertices {1, 2, ..., n} and 
for each i ∈ {1, 2, …, n} a directed edge i → f(i).

The set of all such bijections on {1, 2, …, n} under 
composition forms a symmetric group Sn. 

Bijectivity implies that there’s exactly one edge 
starting at each point and one ending at it, so the 
graph of f  consists of disjoint cycles.

Given f ∈ Sn, let (a1 a2 … ak) denote a cycle of f 
with f(ai) = ai+1,  f(ak) = a1. Then each element 
f ∈ Sn can be written in disjoint cycle notation as 

f = (a1,1 a2,1 … ak,1) (a1,2 … ak,2) … (a1,j … ak,j)

So u = (15473)(268)(9). Let v = (18594)(367)(2).

The graphs of u and v are isomorphic, i.e. there ex-
ists a bijection b of the vertices (which, of course, 
is itself an element of Sn). 

Cycle notation of functions gives us an isomor-
phism b = (1)(2345879)(6). But we can check 
that in fact u = b–1vb. So if we started with points 
in a circle labelled with consecutive numbers, re-
labelled them according to b, drew the edges ac-
cording to v, and re-labelled them again, we'd get 
a graph that looks the same as graph of u. In fact:

Theorem  Bijections f, g ∈ Sn are conjugate 
iff their graphs are isomorphic. Moreover, 
θ : f → g is a graph isomorphism iff  f = θ –1gθ.

Thus the conjugacy classes in Sn correspond to sets 
of bijections of the same cycle type.
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Genus of a Graph
Loosely speaking, as any cycle can be drawn in a 
plane without its edges intersecting, so can any 
graph of a bijection. Graphs with this property 
are called planar. But which graphs are planar and 
what can happen if they’re not?

Let G be a graph with vertices V and 
edges E and consider the set

G = ⋃vw ∈ E [0,1]vw ,

where 

1. for each vw ∈ 
E, arc [0,1]vw is 
homeomorphic 
to [0,1], 0 being 
identified with v 
and 1 with w,

2. for each pair vw, v′w′ 
∈ E of distinct edges, arc 
[0,1]vw and [0,1]v′w′  intersect at 
most at vertices.

G with the above topol-
ogy is a topological rep-
resentation of a graph 
G = (V,E). As in topol-
ogy, we’re mostly in-
terested in graphs up 
to homeomorphism. 

Drawing of a graph G is 
then a continuous mapping 
from G to the plane. If the 
mapping is also injective, 
we get a homeomorphism 
from G to a subset of the 
plane and we say that the 
graph is planar. It’s easy 
to determine whether 
a graph is planar by 
using the following 
famous theorem:

Theorem (Ku-
ratowski)  A graph 
is planar iff it contains no 
sub-graph, 
homeomorphic to the complete graph K5 or 
the complete bipartite graph K3,3.

But as soon as two images of edges cross some-
where else than at vertices, the mapping is not 
injective and can not be a homeomorphism. Sup-

pose we start with a drawing of a graph G. First 
notice that by modifying edges a bit we can make 
sure that at most two edges intersect any point, 
that is not a vertex. Now map a plane to a sphere 
via stereographic projection, and get a drawing of 
G on a sphere. Add an extra handle to a sphere for 
each intersection, and let one of the edges go over 
the other around the handle, so that they don’t in-

tersect. The result is an embedding 
of a graph G on surface S, i.e. 

a homeomorphism e from 
G to a subspace of S.

The genus of an orient-
able surface S is the 
number of handles 
added to a sphere to 
obtain it, but see the 

next section for more 
details. If the graph we 

started with was finite, we’ve 
added at most finitely 

many handles, and can 
then define the genus 
of a graph to be the 
smallest number of 
handles we need to 

add to a sphere to get 
an embedding of a graph 

on a surface. We’ve just 
shown the following:

Theorem  The genus of a finite graph exists.

Surfaces
An embedding of a graph 
G on a surface S is a tri-
angulation if any point 
P ∈ S�G lies in a re-
gion, bounded by ex-
actly three edges of G.

By a surface we mean a 
2-manifold, that is a Haus-

dorff topological space X, such that every  point 
of X has a neighbourhood, homeomorphic to an 
open ball in 2.

It can be shown that a triangulation of any com-
pact surface exists, and playing with it in a clever 
way we can see that, more excitingly, in fact any 
compact connected surface is homeomorphic to 
a space obtained from a 2n-gon by identifying its 
edges in pairs. 

Number of issues of Eureka published up to date.
Appears three times in the list of Fortunate numbers.



62

By considering the homology group of  suitably 
reduced polygons and requiring that the surface 
is orientable, we can show that each surface is iso-
morphic to a g-holed torus.

Regular Graphs of Degree 3
A regular graph of degree k is a graph in which all 
each vertex has k neighbours.

Theorem  There are infinitely many regular 
graphs of degree 3 of genus g for any g.

Outline of proof (see [5] for details):  Given a tri-
angulation of a surface of genus g, blow up each 
of the vertices as shown in the picture, to get a 
regular graph of degree 3, denote it G1. To get G2 
blow up your favourite vertex of G1. Proceed in-
ductively to get Gn for any n.

Genus of a Group
A finite group G, generated by g1, g2, …, gk, can 
be represented by a Cayley graph, with vertices 
the elements of G and edges of colours 1, 2, …, k, 
where for each g ∈ G and i ∈ {1, 2, …, k}, there is 
an edge of colour i from g to gi g.

Above you can see the Cayley graph of D5 = � r, t | 
r 2 = t 5 = e, rtr = t –1 �. Note that the Cayley graph of 
a cyclic group Cn is an n-cycle.

Thus there are exactly k edges starting at each of 
the vertices G and by considering g1

–1, g2
–1, …, gk

–1 
we can conclude that any Cayley graph is regular.

Clearly the Cayley graphs of cyclic and dihedral 
groups are planar. Also the genus of any group 
generated by two elements is at most 1. Com-
bined with results from section on regular graphs, 
one might expect that there are infinitely many 
groups of any given genus. However, the follow-
ing is proved in [5]:

Theorem  The number of groups of any 
genus g greater than 1 is finite.

References, Further Reading
1. M. A. Armstrong, Groups and Symmetry, 

Springer-Verlag New York Inc. (1988) 
2. J. L. Gross, T. W. Tucker, Topological Graph 

Theory, John Wiley & Sons, Inc. (1987)
3. W. S. Massey, A basic course in Algebraic 

Topology, Springer-Verlag New York Inc. 
(1991) 

4. P. Giblin, Graphs, Surfaces and Homology, 
CUP (2010)

5. T. W. Tucker, The number of groups of a given 
genus, Transactions of the AMS (1980)

Only number whose cube, 238328, consists
of three digits each occurring two times.

blow up

e

r

r2r3

r4 t

rt tr=r4t

r2t r3t

Graph theory is of fundamental importance  
when designing and optimising computer chips.



6363Number of partially ordered sets of 5 elements.
Atomic number of the element Europium.



64

Using the Finite 
Simple Groups
Cheryl Praeger, University of Western Australia

The finite simple group classification, an-
nounced by Daniel Gorenstein in February 
1981, was one of the greatest triumphs of 

late twentieth century mathematics, and to this 
day its ramifications continue to drive cutting-
edge developments across many areas of math-
ematics. The list of finite simple groups is surpris-
ingly short: for each prime p, the cyclic group Cp 
of order p is simple; for each integer n at least 5, 
the group of all even permutations of a set of size 
n forms the simple alternating group An; there are 
finitely many additional infinite families of simple 
groups called finite simple groups of Lie type; and 
there are precisely 26 further examples, called the 
sporadic simple groups, of which the largest is the 
Monster (containing 808 017 424 794 512 875 886 
459 904 961 710 757 005 754 368 000 000 000 ele-
ments!).

Already in 1981, some consequences of the clas-
sification were ‘waiting expectantly in the wings’. 
For example, we immediately could list all the 
finite groups of permutations under which all 
point-pairs were equivalent (the 2-transitive per-
mutation groups) [3].

Simple Groups and                        
Algebraic Theory
For other problems it was unclear  for a number 
of years whether the simple group classification 
could be applied successfully in their solution. 
One of the most famous of these was a 1965 con-
jecture of Charles Sims at the interface between  
permutation group theory and graph theory. It 

was a question about finite primitive permutation 
groups. The primitive groups form the building 
blocks for permutation groups in a somewhat 
similar way to the role of the finite simple groups 
as building blocks (composition factors) for finite 
groups. Sims conjectured that there is a function 
f on the positive integers such that, for a finite 
primitive permutation group in which a point 
stabiliser H has an orbit of size d, the cardinality 
of H is at most f(d). In graph theoretic language: 
for a vertex-primitive graph or directed graph of 
valency d (each vertex is joined to d other verti-
ces), there are at most f(d) automorphisms (edge-
preserving permutations) fixing any given vertex. 
Proof of the Sims conjecture [5] in 1983 required 
detailed information about the subgroup struc-
ture of the Lie-type simple groups, and was one 
of the first non-trivial applications of the finite 
simple group classification in Algebraic Graph 
Theory, see [6, Section 4.8C]. The new approach 
in [5] was later developed into a standard frame-
work for applying the simple group classification 
to many problems about primitive permutation 
groups and vertex-primitive graphs.

Stunning new applications of the simple group 
classification in Algebraic Graph Theory continue 
to appear, and many new applications are accom-
panied by deep new results on the structure and 
properties of the simple groups. The most recent 

Originally published in the Gazette of the Aus-
tralian Mathematical Society, Volume 38, Num-
ber 2, May 2011. Reprinted with permission.

Superperfect number with σ(σ(n)) = 2n. Maximum
number of strokes in any Chinese character.
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exciting developments relate to ex-
pander graphs. These are graphs or net-
works which are simultaneously sparse 
and highly connected. They have im-
portant applications for design and 
analysis of robust communication 
networks,  for the theory of er-
ror-correcting codes, the theory 
of pseudo-randomness, and 
many other uses, beautifully 
surveyed in [11]. A family of 
finite graphs, all of the same 
valency but containing graphs 
of arbitrarily large size, is an 
expander family if there is a con-
stant c such that the ratio |∂A| � |A| 
is at least c for every subset A of verti-
ces of any of the graphs Γ in the family, 
where A contains at most half of the 
vertices of Γ and ∂A is the set of 
vertices of Γ at distance 1 from 
A. The new results confirm 
that many families of Cayley 
graphs for simple Lie-type 
groups of bounded rank are 
expander families. This flurry 
of activity began with a spectacu-
lar breakthrough by Helfgott [9] 
in 2008 for the two-dimensional 
projective groups PSL(2,p) over 
fields of prime order p. The strongest cur-
rent results for bounded rank Lie type groups are 
consequences of new results for ‘growth in groups’ 
by Pyber and Szabo [19], and independently 
by  Breuillard, Green and Tao [2] for the finite 
Chevalley groups.

Simple Groups, Primes              
and Permutations
Several  results about permutation groups have 
‘simple’ statements making no mention of simple 
groups, but their only known proofs rely on the 
simple group classification, often on simple group 
theory developed long after the classification was 
announced. In fact many recent results in this 
area demand a deep and subtle understanding of 
the finite simple groups, especially their subgroup 
structure, element statistics, and their representa-
tions.

A surprising link between the number of primes  
and the finite simple groups was discovered soon 

after the announcement of the simple 
group classification. It is a result due 
to Cameron, Neumann and Teague [4] 
in 1982. Each positive integer n ≥ 5 oc-

curs as the index of a maximal sub-
group of a simple group, namely 

the simple alternating group An 
has a maximal subgroup An−1 

of index |An| � |An−1| = n. Let’s 
call n a maximal index if 
n = |G| � |H| for some non-

abelian simple group G and 
maximal subgroup H with (G, 

H) ≠ (An , An−1). It was proved 
in [4] that

 → 1   as   x → ∞,

where  max(x) is the number of 
maximal indices at most x and 
π(x) is the number of primes at 

most x. The limiting density of 
the set of maximal indices is 
‘explained’ by the fact that, for 
each prime p, the projective 

group PSL(2, p) acts primi-
tively on the projective line PSL(1, 

p) of size p + 1, and so has a maxi-
mal subgroup of index p + 1. The ma-

jor motivation that led to this result was 
its consequence for primitive permutation groups, 
also proved in [4]: the number Dprim(x) of integers 
n ≤ x for which there exists a primitive permuta-
tion group on n points (that is, of degree n), other 
than Sn and An, satisfies Dprim(x) � π(x) → 2 as 
x → ∞. Beside the primitive actions of PSL(2, p) 
of degree p + 1, the cyclic group Cp acts primi-
tively of degree p, thus accounting for the limiting 
density ratio 2.

Two decades later I extended this result with 
Heath-Brown and Shalev in [8] as part of our in-
vestigation of quasiprimitive permutation groups, 
a strictly larger family of permutation groups 
than the primitive groups and important in com-
binatorial applications. (A permutation group is 
quasiprimitive if each of its nontrivial normal 
subgroups is transitive.  Each primitive permuta-
tion group has this property, and so do many oth-
er permutation groups.)  The crucial quantity we 
needed, in order to determine  the behaviour of 
the degrees of quasiprimitive permutation groups, 
turned out to be the number sim(x) of simple 
indices at most x, where by a simple index we 

The symmetry groups
of these platonic solids

are finite simple. 

Smallest number that becomes a square when its
reverse is either added to or subtracted from it.
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mean an index |G| � |H| of an arbitrary subgroup 
H of a non-abelian simple group G such that 
(G, H) ≠ (An , An−1). We proved that sim(x) � π(x) 
also approaches a limit as x → ∞, and we proved 
that this limit is the number

where φ(m) is the Euler phi-function, the number 
of positive integers at most m and coprime to m. 
The analogous consequence (which had been our 
principal motivation for studying sim(x)) was that 
the ratio Dqprim(x) � π(x) of the number Dqprim(x)
of degrees n ≤ x of quasiprimitive permutation 
groups, apart from Sn and An, to π(x) approaches 
h + 1 as x → ∞. In this case also, these ratios are 
accounted for by various subgroups of the simple 
groups PSL(2, p).

My ‘all-time favourite’ example of a deep result 
with a deceptively uncomplicated statement is 
due to Isaacs, Kantor and Spaltenstein [12] in 
1995: let G be any group of permutations of a set 
of size n and let p be any prime dividing the order 
|G|  of G (that is, the cardinality of G). Then there 
is at least one chance in n that a uniformly distrib-
uted random element of G has a cycle of a length 
that is a multiple of p. The hypotheses of this re-
sult are completely general, giving no hint that 
the assertion has anything at all to do with simple 
groups. However the only known proof of this re-
sult relies on the finite simple group classification, 
and in particular uses  subtle information about 
maximal tori and Weyl groups of simple Lie-type 
groups. These techniques were the same as those 
introduced  in 1992 by Lehrer [13] to study the 
representations of finite Lie-type groups.

I recently worked with Alice Niemeyer and oth-
ers to understand the precise conditions needed 
for this approach to be effective. We developed an 
estimation method in [16] and used it to under-
pin several Monte Carlo algorithms for comput-
ing with Lie-type simple groups (in [14], [15]). It 
produces sharper estimates for the proportions 
of various kinds of elements of Lie-type simple 
groups than alternative geometric approaches.

Simple Groups and 
Involutions
One of the first hints that understanding the finite 
simple groups might be a tractable problem was 

the seminal ‘Odd order paper’ of Feit and Thomp-
son [7] in 1963 in which they proved that every 
finite group of odd order is soluble, or equiva-
lently, that every non-abelian finite simple group 
contains a non-identity element x such that x2 = 1. 
Such an element is called an involution, and the 
Feit–Thompson result, that each non-abelian fi-
nite simple group contains involutions, had been 
conjectured more than 50 years earlier by Burn-
side in 1911. The centraliser of an involution x 
consists of all the group elements g that centralise 
x in the sense that xg = gx. The  involution  cen-
tralisers  in finite simple groups are subgroups 
that often involve smaller simple groups. Several 
crucial steps in the simple group classification in-
volved systematic analyses of the possible involu-
tion centralisers in simple groups, resulting in a 
series of long, deep and difficult papers character-
ising the simple groups containing various kinds 
of involution centralisers.

Some important information about the simple 
groups can be found computationally, and key for 
this are efficient methods for constructing their 
involution centralisers. To construct an involu-
tion, one typically finds by random selection an 
element of even order that powers up to an in-
volution, then uses Bray’s ingenious algorithm 
[1] to construct its centraliser. This worked ex-
tremely well in practice for computing with the 
sporadic simple groups. A more general develop-
ment of Bray's method into proven Monte Carlo 
algorithms for Lie-type simple groups over fields 
of odd order required delicate estimates of vari-
ous element proportions in simple groups – first 
given in a seminal paper of Parker and Wilson 
[17] (available as a preprint for several years be-
fore its publication), and then in full detail in 
[10].  The estimates and complexity analysis give 
a lower bound on the algorithm performance, 
but do not match the actual (excellent) practical 
performance. A major program is in train to find 
a realistic analysis and the first parts have been 
completed [14], [18].

The classification of the finite simple groups was a 
watershed for research in algebra, combinatorics, 
and many other areas of mathematics. It changed 
almost completely the problems studied and the 
methods used. To realise further the power of the 
classification for future applications, new detailed 
information is needed about the simple groups – 
and this will be gained both as new theory and 
through new computational advances.

Sum of the first 11 integers. Largest number below
2000 not containing the letter ‘e’ (an eban number).
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Sequences
Trevor Pinto, Queens’ College

Lucky Numbers
Do not be fooled by the title – this sequence is so much more than numerological nonsense. An 
alert reader may notice a similarity with the primes; this, however, is not nonsense: the process 
for generating lucky numbers is analogous to the ‘Sieve of Erathosenes’ method for generating 
primes.

Start with all positive integers: 1, 2, 3, 4, 5, 6, 7, 8, 9, … The first lucky number is 1. Then we 
remove every second number from the list: 1, 3, 5, 7, 9, 11, 13, … Now 3 is the smallest number 
on the list that is not already lucky, so we say 3 is lucky, and remove every third number from the 
list: 1, 3, 7, 9, 13, 15, … Now 7 is the smallest number on the list not already called lucky. Thus 7 
is lucky itself, and we continue by removing every seventh number from the list. All the numbers 
that survive by the end are called Lucky numbers.

The similarities between lucky numbers and primes are so great, that lucky numbers satisfy the 
Prime number theorem (i.e. they have the same asymptotic density as the primes), and are con-
jectured to satisfy analogies to both the Twin Prime conjecture and the Goldbach conjecture.

by Ray Demski
6868 Truncated Tetrahedral Number.

Number of tetragonal space groups.
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Sequences are one of the simplest structures in mathematics, being just an ordered list of objects. There 
are many different kinds of sequence but this article deals only with integer sequences - fans of exact 
sequences, dance sequences or DNA sequences, I’m sorry to disappoint. Despite this restriction, the im-
mense variety of such sequences ensures they are an important and interesting topic. Indeed, they even 
have their own journal, the creatively titled ‘Journal of Integer Sequences’. This article is a collection of a 
few of the best.

Kolakoski’s sequence
Some sequences are defined as the collection of numbers with interesting properties, but Kola-
koski’s sequence defines itself by its properties: it is the unique sequence, starting with 1, that 
consists of 1’s or 2’s only, and is equal to its own runsequence. That is, the nth digit is also the 
length of the nth block (a block is a group of adjacent numbers that are equal). This property is 
fairly neat in itself, but the sequence has other interesting quirks.

For example, it may be generated by simple block substitution. Ignore the leading 1, and start 
with 22. The remainder of the sequence may be generated by the substitution rules: 22 → 2211, 
21 → 221, 12 → 211, 11 → 21 Equally surprising, is the existence of a simple recursive formula for 
the sequence: If K(n) is the nth term of the sequence, then

Although not obvious at first sight, this is enough to generate the entire sequence as K(n), with 
no number bigger than 2 for all n.

Perhaps as impressive as both these facts are the things we don’t know about the sequence. For 
instance, it is unknown whether the proportion of 1’s in the sequence is 1�2; in fact it is not even 
known if the proportion exists.

by Jason Halayko

Its square and its cube together 
contain every digit exactly once. 69
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Partition numbers
This arises from one of the simplest of combina-
torial problems: for any natural number n, p(n) 
is the number of ways of writing it as a sum of 
positive numbers (the order of these numbers 
is ignored). For example 3 may be expressed in 
three ways: 3, 1 + 2 and 1 + 1 + 1, so p(3) = 3.

The generating function for partition numbers 
factors elegantly:

To see that this equality holds, expand each 
term in the product as a geometric series:

(1 + x + x 2+ x 3 + …) (1 + x 2 + x 4 + x 6 + …) (1 + x 3 + x 6 + x 9 + …) …

The coefficient of x n in the product counts the number of ways of writing n = a1 + 2 a2 + 3 a3 + … 
for non-negative integers ai, that is the number ways of writing n as n = (1 + 1 + … + 1) (2 + 2 + 
… + 2) + … where each number i appears ai times. Clearly, this is equivalent to the definition of 
the partition number.

Another surprising pattern in the partition numbers was discovered by Srinivasa Ramanujan, 
who proved the following congruences:

p(5n + 4) ≡ 0 (mod 5),      p(7n + 5) ≡ 0 (mod 7),      p(11n + 6) ≡ 0 (mod 11).

These are made more remarkable by the fact that no similar congruence exists for any other 
prime number.

Although no simple exact formula for partition numbers is currently known, Hardy and Ra-
manujan proved the following asymptotic formula (don’t be surprised by the appearance of those 
ubiquitous numbers, π and e):

by Ray Demski
7070 Smallest “weird” number. National

speed limit, im mph, in the UK.
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Look and say sequence
Every term in this sequence (apart from the first one) is produced by reading the previous term. 
For instance, the fifth term is 111221, which can be read as ‘three 1’s, followed by two 2’s, then 
one 1’, making the next term 312211.

This sequence is often used as a ‘guess the next term’ puzzle, designed to trip up mathematicians 
due to its apparently non-mathematical recurrence relation, yet perhaps surprisingly, there are a 
wealth of mathematically interesting facts about the sequence.

For instance, every term ends in one, and no digit over 3 ever gets used (can you see why this is?). 
Also, the word lengths exhibit a pattern: the nth root of the length of the nth number tends to a 
limit, namely 1.303577…, which has been proved to be an algebraic number of degree 71. This is 
true regardless of what the first term is, except for one degenerate case, in which the starting term 
repeats ad infinitum. (Can you find this term? It has only 2 digits).

Most amazing of all is Conway’s Cosmological Theorem: no matter what the starting value for 
the sequence is, it eventually splits into a sequence of ‘elements’ which don’t interact with their 
neighbours in later terms of the sequence. (There are exactly 94 such elements, named Hydrogen, 
Helium, …, Plutonium by Conway).

by Marcio Abe

Divides the sum of all primes less than it. 
Algebraic degree of Conway’s constant. 71
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The greatest sequence of them all…
Even the most unremarkable of sequences may have hidden depths; ‘Moessner’s magic’ is a prime 
example. First let us underline every second natural number. Then, in a new row, let us write 
down cumulative total of the non-underlined numbers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 4 9 16 25 36 49 64 81 100

This gives us a neat method of  generating the square numbers from the natural numbers, using 
only addition. But the real magic is yet to come…

In the first row, let us underline every third number. In the second row, let us underline every 
number that precedes a crossed out number in the previous row. Again we add a third row with 
the cumulative sums of the uncrossed numbers in the previous row.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 3 7 12 19 27 37 48 61 75 91 108 127 147
1 8 27 64 125 216 343

This leads us to produce the cube numbers, again using no operation other than addition. Dif-
ferent initial configurations of underlined numbers leads to a different sequence (no prizes for 
guessing what underlining every n th number produces!). Perhaps the most surprising case of 
Moessner’s magic is caused by crossing out the triangle numbers in the first row: we produce the 
factorial numbers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 6 11 18 26 35 46 58 71 85 101 118 136 155 175

6 24 50 96 154 225 326 444 580 735
24 120 274 600 1044 1624

120 720 1744
720

by Jason Halayko
7272 Maximum number of spheres that can touch

each other in a lattice packing in 6 dimensions.
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Further Reading
A good place to start is an article “Some very interesting sequences” 
by Conway and Hsu, available online, which contains the Look-and-
Say sequence, and Moessner’s magic in more detail, as well as a few 
other sequences.

A far more comprehensive source is the Online Encyclopedia of In-
teger Sequences, www.oeis.com, a searchable database with around 
200 000 entries, which sticks rigidly to the definition of an integer se-
quence as any list of integers, not just special ones. It contains almost 
every integer sequence imaginable, from the interesting and useful, 
for example the number of groups of size n, to the dull and trivial, eg. 
the zero sequence and the list of stops on New York’s No. 6 bus.

Those wishing for proofs and detailed studies of sequences should 
consult the Journal for Integer Sequences, also available online. Most 
interesting sequences are also discussed in both Wolfram MathWorld 
and Wikipedia.
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by Ray Demski

Least number of sixths powers
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On a usual day, let’s assume you are think-
ing about big numbers, say factorials, and 
digits, say zeros. A common question 

that might pop up in your mind could be, how 
many zeros are there at the end of 1000 factorial ?

You may already know the answer. I certainly do, 
it’s 249, because I read it in a book a long time ago 
and for some weird reason it hasn’t left my mind 
since then. You may also know how to find it. But 
just in case you don’t, here’s how to do it.

To find the number of zeros, we just need to find 
how many times the factors 2 and 5 appear in the 
prime factorization of 1000!. But there is already 
a large supply of factors of 2, so we need only find 
how many times the factor 5 appears. That’s easy, 
there are ⌊1000�5⌋ = 200 multiples of 5, each con-
tributing at least a 5 in the prime factorization of 
1000!. But hang on, there are also factors of 52 = 25 
each of which contributes an extra 5. There are 
⌊1000�52⌋ = 40 such factors. Similarly, each fac-
tor of 53 = 125 contributes even one more 5’s, and 
each factor of 54 = 625 again contributes one more 
5. We don't need to worry about 55 as there are 
no multiples of 55 between 1 and 1000. Thus our 
answer is

= 200 + 40 + 8 + 1 = 249.
After coming this far, you are probably think-
ing about generalising this. Indeed, it very easily 
generalises to the following theorem attributed to 
Legendre [1]. Henceforth, n and r are positive in-
tegers with r ≤ n and p is a prime. We will also say 
the exponent of p in x to mean the exponent of p 
in the prime factorization of x.

Theorem 1  The exponent of p in n! is given 
by

Why do we sum up to infinity? More importantly, 
why should p be prime? I shall leave these to you 
to worry about.

So now we know how to find the exponent of p in 
n!. We can do more and find the exponent of p in 
n!�r!, or even better, n!�r!(n – r)!, the binomial co-
efficient �r

n�. Binomial coefficients are important 
numbers, so it should be worth investigating their 
prime factors.

Proposition 2  The exponent of p in �r
n� is

There is an advantage in writing the sum in the 
above form.

Proposition 3  For real numbers a and b,
⌊a + b⌋ – ⌊a⌋ – ⌊b⌋ ∈ {0,1}.

Proof: Writing {x} = x – ⌊x⌋ we need to show 
that {a + b} – {a} – {b} ∈ {0,1}. Note that 
{a + b} = �{a} + {b}�. Thus if {a} + {b} < 1, then 
{a + b} = {a} + {b}. Otherwise 1 ≤ {a} + {b} < 2, 
so {a + b} + 1 = {a} + {b}. ◻

Hence it follows that the value of each bracket in 
the sum in Proposition 2 is equal to either 0 or 1. 
Therefore the exponent of p is precisely the num-
ber of brackets equal to 1. From the above proof, 

The Factors 
of Binomials
Samin Riasat, Queens’ College

Smallest non-interesting number. If you can think of
anything worth mentioning, please let us know!
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if and only if
  

Although this is a good criterion to check whether 
a prime divides a binomial coefficient, it is rarely 
used in practice. Nevertheless, we can deduce 
some quick facts from this: for example, if r and 
n – r are both odd, then  +  =  +  = 1. 
This proves

Proposition 4  If n is even and r is odd, 
then �r

n� is even.

In fact, we can do better.

Proposition 5  If the exponent of 2 in n is 
greater than the exponent of 2 in r, then �r

n�  
is even. 

Proof: Let r = 2qa, n = 2qb, with a odd and b even. 
Then n – r = 2q(b – a), and since b – a is odd,

◻

We can use our ideas to investigate the odd and 
even entries in Pascal’s triangle. If we denote the 
odd and even entries by black dots and blanks, re-
spectively, we will get a beautiful fractal called the 
Sierpinski triangle [2].

But first let’s go back to Proposition 2 and see if 
we can find a better criterion. There are powers 
of p everywhere,  , which suggests us to look at 

things in base p. Let the base p representations of 
n, r and n – r be

where ak ≠ 0. Afer some simple manipulations we 
find that 

if and only if in base p,

We have just proven the following amazing result:

Theorem 6  The exponent of p in �r
n� is 

equal to the number of carries when adding 
r and n – r in base p.

This result was proven by Kummer in 1852 [3]. 
Here are some straightforward consequences.

1.   is odd if and only if, for each i, the i th 
binary digit of m or n is 0.

2.  p divides  if and only if the (k + 1)th 
digit of n in base p is p – 1.

3.  p divides  if and only if pk does not 
divide n.

Many amazing properties of the Sierpinski trian-
gle can be deduced from our discussion so far. But 
I should better stop and not ruin the fun for you!

References
1. Wikipedia Factorial, 
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There are 75 uniform polyhedra (excluding the
infinite set). It is the Diamond Wedding Anniversary.

 A Sierpinski Pyramid 
(red) and it’s inverse (blue).
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The year is 1873 and Charles Hermite is 
about to prove that the number e is tran-
scendental. Before investigating the proof, 

let us set the scene.

A complex number z is algebraic if there exists a 
non-zero polynomial P with integer coefficients 
such that P(z) = 0. The numbers 3, 0.125 and √2−, 
for example, are all algebraic.

A complex number z is transcendental if it is not 
algebraic, i.e. if there is no polynomial with inte-
ger coefficients having z as a root. Broadly speak-
ing, real transcendental numbers are ‘very irra-
tional irrationals’. For almost all of what follows, 
we will limit our discussion to the reals.

The story so far
The irrationality of e was proved by Leonard Eu-
ler in 1744. Johann Heinrich Lambert, upon 
proving that π was irrational in 1761, conjectured 
that both e and π were transcendental. Unfortu-
nately, at the time no one knew whether transcen-
dental numbers existed at all!

The breakthrough was in 1844, when Joseph Li-
ouville noted that algebraic numbers have poor 
rational approximations and thereby discovered a 
whole class of transcendental numbers. In 1851, 
he published the first explicit example, Liouville’s 
Number, L = 0.1100010000000000000000010… = 
⨋ 1

�10−n!.

Liouville’s Number
The proof is surprisingly simple, and boils down 
to the following imaginative argument.

1. Suppose L were algebraic. Consider the 
hypothetical polynomial P that we claim 
has L as a root.

2. Take a sequence sm of rationals tending to 
L. Heuristically, P(sm) can’t be that big. (The 
rigorous formulation of what ‘not that big’ 
really means is the bulk of the proof.)

3. However, if P has degree k and sn has de-
nominator q, then |P(sn)| ≥ q−k.

4. Thus if sn can get really close to L whilst 
maintaining a small denominator then at 
some point we will get a size contradiction. 

Now L has been constructed via a very rapidly 
converging rational series, and the convergence is 
rapid enough to push through this argument. 

Before you jump for joy, regrettably e does not 
yield directly to this rational approximation ap-
proach. We need new ideas.

Terrifying 
Trancendentals
Aled Walker, Trinity College

1 2 3–2 –1

1
2

–2
–1

–3

Atomic number of the densest element, Osmium. 
Number of books in the Catholic bible.
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The Ideas
Again we start by assuming that e is algebraic.

Idea 1
Given that a size contradiction helped us with Li-
ouville’s number, it would be great if we could ap-
ply a similar notion here. Let our aim be to create 
some expression J with the property that p! ≤ |J | 
≤ c p, where c is a constant independent of p. Then, 
sending p to infinity, the factorial will ‘beat’ the 
power, and we will have a contradiction. 

Idea 2
We know that e x behaves well under integra-
tion and differentiation; it might therefore be 
pertinent to use integrals as bounding appara-
tus. Suppose that we could construct an integral 
I(t) = e tA − B(t), and have J be a clever sum of 
copies of I(t) such that the e t terms vanished due 
to our algebraic assumption. Suppose moreover 
that we could engineer the sum of the Bs to be 
necessarily ‘quite big’. Then |J | would also have to 
be ‘quite big’, since there are no e t terms to miti-
gate the size of the Bs. But we could also try to 
bound  |J | from above using theory from integra-
tion. Then apply idea 1. 

So let us suppose that qn e
n + qn−1 e

n−1 + … + q1 e 
+ q0 = 0, with integers qi, q0 ≠ 0 and see where it 
takes us.

The Proof 
The version given below is a simplification of Her-
mite’s ideas, undertaken by Karl Weierstrass 
in 1885 and David Hilbert, Adolf Huritz and 
Paul Gordan in 1893. 

Let I(t) = ∫0

t e t−u f(u) du, where for the moment 
f(u) is an arbitrary polynomial of degree m. This 
might seem hilariously random, but if we hit this 
with integration by parts repeatedly we get

where f (j)(k) is the j th derivative of f(x) evaluated 
at x = k. This is of the form we thought about be-
fore!

Three pioneers of Irrational numbers: Joseph  
Liouville (1809 – 1882), Karl Weierstrass (1815 –

1897) and Charles Hermite (1822 – 1901).

Largest integer that cannot be written as a sum
of distinct numbers whose reciprocals sum to 1.
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Our clever sum is J = qn I(n) + qn−1 I(n − 1) + … + 
q1 I(1) + q0 I(0). This kills all the e t terms, and we 
are left with

Thus we have a completely free choice of f(x), but 
we do need to be able to get a grip on the size of J. 
This can be done via a divisibility argument.

Let f (x) = x p−1 (x − 1) p (x − 2) p … (x − n) p, with p 
prime. Why should this function be useful? Well, 
f (x) looks a little like (xn)p if you tilt your head 
enough, which is going to help with our upper-
bounding of J and implementing Idea 1. Also, 
the function is designed so that many derivatives 
(evaluated at 0, 1, 2, …, n) will be zero. We might 
therefore be able to understand the divisibility 
properties of the sum of the above derivatives bet-
ter. 

The critical result is that p! divides all but one term 
in the double sum. This is because, in the midst of 
a gigantic product rule explosion, we can see that, 
with k an integer such that 0 ≤ k ≤ n, we have 
•	 if j ≤ p − 2, then f (j)(k) = 0 for all k;
•	 if j = p − 1, then f (j)(k) = 0 for all k > 0;
•	 if j ≥ p, then each term in our product rule 

expansion of f (j)(k) will either be 0, or have 
the (x − k) p term differentiated p times. 
Therefore, we will have the p! produced 
by this repeated differentiation ‘out front’. 
Thus, p! will divide f (j)(k).

Hence, p! definitely divides all but one term in J, 
with the one uncertainty being j = p − 1 and k = 0. 

In the massive product rule expansion of this de-
rivative, all terms will be zero except the one that 
includes x p−1 differentiated p − 1 times. Thus just 
consider the term f (p−1)(0) = (p − 1)! (−1)np (n!)p.

Let’s make p > n. Then (p − 1)! divides f (p−1)(0) but 
p does not. So (p − 1)! divides J, but p! does not. 
Therefore |J | ≥ (p − 1)! – hooray!

Now all we need is an upper bound on J, and this 
will take the form of c p based on our observation 
that f (x) looks like (xn)p from the correct angle. 
More rigorously, observe that for 0 ≤ t ≤ n,

 |I(t)| ≤  ∫
0

t
|e t−u f (u)| du

  ≤  t e t t p−1 (t + 1)p (t + 2)p … (t + n)p

  ≤  t e t (2n)(n+1) p – 1.
Therefore

 Visualisations of the countable set of algebraic num-
bers in the complex plane.  You can see the integers 0,1 
and 2 at the bottom and +i near the top.
Left:  Colours indicate the leading coefficient of the 
polynomial it is a root of (red = 1 i.e. the algebraic inte-
gers, green = 2, blue = 3, yellow = 4). Points becomes 
smaller as the other coefficients and number of terms in 
the polynomial become larger.
Right:  Colours indicate degree of the polynomial the 
number is a root of (red = linear, i.e. the rationals, green 
= quadratic, blue = cubic, yellow = quartic). Points be-
comes smaller as the integer polynomial coefficients 
become larger. Stephen Brooks

Smallest integer that can be written as the
sum of four distinct squares in three ways.
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   |J|  ≤  |qn| |I(n)| + |qn−1| |I(n − 1)| + … + |q1| |I(1)|
  + |q0| |I(0)|
 ≤  |qn| n e n (2n)(n+1) p – 1 + … + |q1| e (2n)(n+1) p – 1

 ≤  max�|qi|� n 2 e n (2n)(n+1) p

 ≤  A c p,

with A and c constants independent of p.

Therefore, (p − 1)! ≤ |J | ≤ A c p, which gives a con-
tradiction for p suitably large. QED!

Reflection
We can run the entire proof with f(x) divided by      
(p − 1)!. In this case, the final contradiction has J 
being a non-zero integer trapped by a sequence 
tending to zero. This smells similar to the proof 
that π is irrational. 

We achieved exactly what we set out to do in ideas 
1 and 2; the queer truth is that we almost never 
referred to e at all! We only used the differen-
tiation properties of e x, when expanding I(t) by 
parts. It might not come as a surprise then that a 
more general result can be proved by very similar 
means; if x is algebraic and non-zero then e x is 
transcendental. This was achieved by Lindemann 
in 1882. 

And you know what that means? Well, e iπ = −1, so 
π algebraic ⇒ iπ algebraic ⇒ −1 transcendental, 
which is a contradiction. So π is transcendental! 

Think about plane geometry. In a coordinate sys-

tem that gives the starting points integer coordi-
nates, all points constructible by a compass and 
straight edge have algebraic coordinates. In order 
to square the circle, the great problem from an-
tiquity, we have to construct the length √π−, which 
is transcendental. Hermite and Lindemann had 
solved a 2200 year old enigma. 

Addendum
An interesting historical note: Hermite proved his 
result about e in 1873, a truly great achievement. 
However, just one year later in 1874, Cantor 
showed that ‘almost all’ numbers are transcen-
dental through his work on countability. Proving 
that a particular given real was transcendental 
was still ferociously difficult, but the problem of 
existence had been triumphantly annihilated.

Atomic number of Gold. A fortunate, Gaussian, happy,
Higgs, Kynea, lucky, permutable, Pillai and regular prime.
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Impossible Integrals
Damian Reding, Trinity College

No doubt, when walking along the path 
through the world of mathematics you 
have come across one of the widely 

known facts which give away no clue as to why 
they are true. Examples might be the non-exist-
ence of a general solution formula in radicals to 
polynomial equations of degree 5 or higher, or, 
given any group, the existence of a topological 
space with this group as the fundamental group, 
not to mention Fermat’s Last Theorem. The pur-
pose of this article is to provide relief from one of 
such burdens: The fundamental theorem of cal-
culus guarantees existence of antiderivatives to all 
continuous functions, though it is well-known but 
unclear that some of them are not expressible in 
terms of so called elementary functions (or rather 
not finitely expressible to avoid series expansions). 
Further, it is natural to ask for a necessary and suf-
ficient condition for a function to belong to this 
class. For a certain range of functions, including 
the classical example x ↦ ex2 , the solution to this 
innocent sounding problem is wrapped in termi-
nology and buried in the depths of a weird field 
called differential algebra, which can be roughly 
understood as algebra imitating analysis. Let us 
begin with a crash course.

Differentiation on General 
Fields
To breathe life into this concept we no longer re-
gard differentiation as a limiting process, but as 
evaluating a map: A derivation of a field F is a map 
∂ : F → F satisfying for all a,b ∈ F

∂(a + b) = ∂a + ∂b,
∂(ab) = (∂a)b + a ∂b    (Leibniz Rule).

(No, a derivation cannot be a field homomor-
phism – for a very simple reason, can you see it?) 

The pair (F,∂) is a differential field; applying ∂ is 
referred to as differentiation and the value ∂f is 
the derivative of f ∈ F. By playing around with the 
Leibniz rule, we quickly obtain the quotient rule

for all a,b ∈ F and b ≠ 0.

To induce linearity as satisfied by the usual dif-
ferential operator, we must identify F as a vector 
space over some field, but the idea to take F itself 
is bad, because differentiation will in general not 
commute with multiplication. In order to over-
come this obstacle to linearity, we need the first 
term in the Leibniz rule to vanish, so we consider 
the subset C(F) := {c ∈ F | c = 0}. Using the quo-
tient rule we easily see that this is a subfield, the 
field of constants, of F, and it pleases the eye to see 
that now differentiation becomes a C(F)-linear 
operator F → F.

As an example, the rational functions F ≅ (z) 
with ∂ = d�dz form a DF with C(F) ≅ .

A differential field homomorphism 
(F, ∂F) → (E, ∂E) 

is a field homomorphism δ : F → E, which re-
spects the differential structures in the sense that 
the following diagram commutes:

Days needed by Phileas Fogg to travel around the world.
The A380 is the world’s largest passenger aircraft.
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A differential extension, written E :∂ F, is formally 
an injective DFH (F, ∂F) → (E, ∂E), but in practice 
we assume F to be wlog a subfield of E with ∂F the 
restriction of ∂E to F. Of importance for the theory 
is the following (perhaps a bit surprising) result:

Existence of Differential Extensions  Let 
(F, ∂F) be a differential field and let E : F be 
a field extension. Then there exists an exten-
sion of ∂F to a derivation ∂E of E.

Proof: (1) If E = F(t) with t transcendental over F 
this is easy: We can naturally extend the deriva-
tion of F to a derivation ∂– of F[t] by setting:

and then extend ∂– to a derivation of the field of 
fractions F(t) = E via the quotient rule.

If E = F(a) with a algebraic over F we need a clever 
trick: We consider the derivation of F[X] given by 
the formal derivative 

and then note that for any g(X) ∈ F[X] the linear 
combination ∂g := ∂– + g(X) d�dX is a derivation 
of F[X] extending ∂F (∂– being the derivation from 
(1), t now replaced by X). Let pa(X) ∈ F[X] be the 
minimal polynomial of a, so that dpa�dX(a) ≠ 0. 
Note that F(a) = F[a] since a is algebraic over F, so 
we can choose g ∈ F[X] such that 

(∂g pa)(a) = (∂–pa)(a) + g(a)dpa�dX(a) = 0,

so we have (∂g pa)(a) = paf for some f ∈ F[X]. This 
shows that σg maps the ideal (pa) into itself and so 
defines differential structure on the correspond-
ing quotient

∂ : F[X]�(pa) → F[X]�(pa),
f  + (pa) ↦ ∂g f + (pa)

But since evaluation X ↦ a gives rise to an iso-
morphism 

there exists a derivation ∂E on E extending ∂F.

(3) Together, (1) and (2) show that every exten-
sion field of F obtained by adjoining finitely many 
elements admits a derivation extending ∂F, and 
by appropriate use of Zorn’s lemma the result 
extends to any extension E :∂ F. Further, if we as-
sume E : F algebraic (⇐ finite), then uniqueness 
of ∂E follows easily from the existence of minimial 
polynomials.

For the following section we note that the theo-
rem enables us to speak automatically of a differ-
ential extension E :∂ F whenever we are given a 
field extension E of a differential field (F, ∂). Thus, 
we denote an extended and fixed derivation of E 
by ∂ as well.

The Nature of Derivatives
An element e ∈ E is elementary over F if it is either

1. algebraic over F,
2. an exponential over F, so ∂e�e = ∂f for some f ∈ F, 
3. a logarithm over F, so ∂e = ∂f�f for some f ∈ F.

A DFE obtained by adjoining finitely many ele-
ments elementary over F, is called an elementary 
DFE of F. Now, the key definition is the following: 
An f ∈ F has an elementary integral if there exists 
an EDFE E :∂ F s.t. ∂e = f for some e ∈ E. Of course 
every good theory has its big theorem:

Liouville-Ostrowski Theorem  Let (F, 
∂) be a DF of characteristics zero and let 
f ∈ F have an elementary integral over some 
EDFE  E :∂ F with the same field of constants. 
Then f  is of the form

for some v, u1, …, un ∈ F and constants c1, …, 
cn ∈ C(F).

The essence of this is that Elements in a DF which 
are derivatives in EDFEs are derivatives in the 
base DF themselves,up to finitely many additive 
constant multiples of logarithmic derivatives.

The restriction to zero characteristic is necessary 
in order to be able to speak about linear inde-
pendence of the above constants over rational 
numbers. The rather lengthy and intricate proof 
of this powerful theorem is by induction on the 
tower length of the EDFE and makes use of el-
ementary differential Galois theory. It essentially 
consists of algebraically elaborate disposals of nu-

Number of stable chemical elements.
Square of the sum of its digits.
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merous cases by contradiction and all we can do here 
is to refer to M. Rosenlicht’s article entitled Liouville’s 
Theorem On Functions With Elementary Integrals.

Elementary Antiderivative if 
and only iffffff…
Equipped with Liouville's theorem, we now re-
strict consideration to the differential field of 
(real or) complex-valued rational functions (z) 
equipped with the derivation given by the usual 
analytic derivative ∂ = d�dz. In this special case 
the elementary integrals are referred to as elemen-
tary antiderivatives. Examples of EDFEs here are 
(z, ez) or (z, log z) and all the usual elementary 
functions known from Analysis I are obtained that 
way. Further, we note that the constants in every 
EDFE of (z) will be precisely the constant func-
tions, so the assumptions of Liouville's theorem 
are satisfied.

Existence of Elementary Antiderivatives  
Let f, g be rational functions of the (real or 
complex) variable z, such that f is non-zero 
and g is non-constant. Then, the function z 
↦ f(z) e g(z) has an elementary antiderivative 
if and only if there exists a rational function 
r satisfying the 1st order ODE

If namely r ∈ (z) satisfies the ODE, then the an-
tiderivative z ↦ r(z) e g(z) does the job. Conversely, 
write t = eg, (.)′ := d�dz, and suppose fe g has an 
elementary integral in some EDFE of (z,t), so 
by Liouville’s theorem there exist c1,…,cn ∈  and 
u1,…,un,v ∈ (z,t) such that 

A field-theoretic argument establishes the transcend-
ency of t over (z) and consequently the proof of 
Liouville’s theorem shows that v ∈ (z)[t] and ui = 
gitki for some gi ∈ (z) and gi ∈ Z. This gives

Hence, there is m > 0 such that we can write v = 
∑m

i=1vit i with vi ∈ (z), vm ≠ 0. Differentiating gives

and for all i such that vi ≠ 0 we must have 
vi

′ + i vi g
′ ≠ 0, otherwise i g′ = −vi

′�vi would have 
only simple poles, which is a contradiction. There-
fore m = 1, so we take r = v1 and note

ft − c = v ′ = v0
′ + (v1

′ + v1 g
′)t = v0

′ + (r ′ + rg′)t.

Transcendency of t implies r ′ + rg′ = f, as required.

Showdown
Corollary  Regrettably, the function z ↦ ex2 
has no elementary antiderivative.

This will not take a lot of believing anymore as we 
are sceptical of the existence of polynomials with 
poles: If an elementary antiderivative of z ↦ ex2 
existed, then by the above criterion we could pick 
non-zero polynomials p, q of degrees m, n ≥ 0, re-
spectively, such that r = p�q satisfies r ′ + 2zr = 1. 
Substituting this gives

Comparing polynomial degrees gives mn + 1 = n2, 
so n = 1 and m = 0. Hence r ′�r = 1�r − 2z = q�p − 2z 
is a polynomial in z. But r is non-constant, so 
r ′�r must have a pole!

Very closely related to the above is Differential 
Galois Theory, a theory which roughly speaking 
does with linear differential operators over differ-
ential fields what usual Galois theory does with 
polynomials over algebraic fields. It evolves much 
in analogy to algebraic Galois theory and ends up 
answering questions like why the 2nd order ODE 
y ′′ + xy = 0 is insolvable in terms of elementary 
functions and integration, or why there does not exist 
a linear differential equation satisfied by x ↦ sec(x).

Further Reading
For a nice informal account of DGT see Andy R. 
Magid’s article Differential Galois Theory, for a 
more rigorous treatment refer to e.g. M. van der 
Put’s and M. Singer’s Galois Theory of Linear Dif-
ferential Equations.

Atomic number of the heaviest stable element,
Bismuth. Sophie Germain and a Eisenstein prime. 83The sixth nuclear magic number. Number of 6-hexes

(shapes made by joining six regular hexagons).



83

Archimedeans
Standing Orders
Adopted on 4 March 1984, Extract

1. The Subgroups of the Society are:
•	 Puzzles and Games Ring;
•	 Music Appreciation Subgroup;
•	 Barber-Shop Subgroup;
•	 Play Reading Ideal.

2. The Archimedeans’ scarf shall be between 
three and four cubits in length, and con-
structed of lengthwise strips of colours and 
approximate widths in the following order:

 Dark green 2 inches
 Orange  1/2 inch
 Purple  3/4 inch
 Orange  1/2 inch
 Dark blue 2+1/4 inches
 Orange  1/2 inch
 Purple  3/4 inch
 Orange  1/2 inch
 Dark green 2 inches

The Publicity and Entertainments Manager 
shall be responsible for its vileness.

3. There exists the transitive verb “to zog”.

4. The symbol of the Archimedeans shall be 
a projection onto Euclidean 2-space of a 
sphere inscribed in a right circular cylinder 
of the same height as the sphere's diameter.

5. The Society shall have the following Agents, 
to be appointed by the committee:

•	 The Chartered Accountant, to advise the 
Junior Treasurer, and need not be quali-
fied as a Chartered Accountant.

•	 The Avuncle, who should have matricu-
lated not less than three years ago.

•	 The Patriarch or Matriarch, as appropriate, 
who shall have no grotty duties to per-
form but shall advise the President on all 
matters. The President shall listen to the 
Matriarch or Patriarch.

•	 Minorities Officer, who shall seek to rep-
resent the interests of minorities.

•	  A Procrastinator (or “Prat” for short) who 
shall hinder the activities of  the Society as 
far as possible, and shall take upon him-
self or herself  responsibilities which shall 
not be fulfilled.

•	  A Mascot who shall be responsible for 
providing free legal advice and warm tea.

•	 The Druid, who shall be responsible for 
the moral and spiritual well-being of 
Members of the Society. 

•	  The Society shall have a President of Vice. 
He or she need not be a Member of the 
Society. He or she shall tend for the vices 
of Members of the Society.

6. The transitive verb “to helena” shall mean to 
tamper with in such a way as to render com-
pletely nonn-funkshonal.

7. In the Constitution, the noun “Mathema-
tician” with a capital M shall mean anyone 
who is or has completed taking the Math-
ematics Tripos. The noun “mathematician”  
with a small m shall mean anyone who is 
interested in mathematics.

DiscoveryinData.com

The financial markets 
are our laboratory...

WINTON CAPITAL MANAGEMENT LTD
1-5 St Mary Abbot’s Place, London W8 6LS

Driven By Research
Do you want to work with 
large datasets, designing 

trading algorithms for global
financial markets?

We seek postgraduate
mathematicians with an 

interest in markets and the
determination to tackle complex,

challenging problems.

Please see our website for more
information or visit us at the
department careers event on
Wednesday 2nd November.
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Engage. Explore. Excite.  
Scientific Collaboration
Dr Marj Batchelor, DPMMS

I owe my mathematical career to a turkey. I 
was at the time a PhD student at MIT, a very 
wayward one, following my own thoughts and 

heedless of my supervisor’s suggestions. I had a 
shelf full of exciting ideas that had led nowhere. 
Attempt 32A for example, had demonstrated that 
the category of supermanifolds offered no ad-
vantages over vector bundles as a tool for distin-
guishing one smooth manifold from another. My 
friend and colleague, Barbara Peskin, had cooked 
Thanksgiving dinner for 
her brother, the now emi-
nent physicist, and his 
friends. Inevitably, din-
ner table chatter rapidly 
turned to physics and 
stayed there, leaving my 
algebraic geometer friend 
somewhat out of the flow. She did however hear 
the word “supermanifold” mentioned repeatedly, 
and this offered a point of entry. “Oh, Marj says 
they are all just vector bundles.” It rather stopped 
the conversation than furthered it; the result was 
significant news. Thus attempt 32A was rescued 
from oblivion, dusted off, typed and submitted as 
a thesis. Had it not been for that turkey, my career 
as a mathematician might have been short indeed.

That turkey also catapulted me, a dyed-in-the-
wool (dyed on the sheep?) algebraist, into the 
land of theoretical physics. Looking back, I am 
amazed at my arrogance in supposing that I could 
aspire to learn enough field theory to make any 
useful contribution. Perhaps the natural conceit 
of youth was supplemented by the advantages of 
an American undergraduate education. Here, we 

spend hours in faculty meetings debating course 
syllabuses in the search for some unique (pos-
sibly space filling) path that will touch all fields 
of mathematics. In the US, universities despair of 
the existence of such a route, and offer modules 
to be selected at the students’ whim, governed by 
a loose system of prerequisites. One consequence 
is that most US students have gaps in their math-
ematical background, which must be filled in the 
first few years of a PhD programme, but the sys-

tem also confers a general 
confidence that anything 
can be learnt from books 
or colleagues and no 
fields are off limits. The 
US system even strongly 
encourages students to 
take courses outside their 

major. However it happened, the decision to study 
field theory and appoint myself as supermanifold 
mechanic to the quantum field theory and general 
relativity community seemed a natural step, cer-
tainly one I never questioned.

Sharing Mathematical Interest
I never questioned the decision, I never even 
thought about it much. It is only in recent years, 
since I have had responsibility for PhD students 
in DPMMS, that I have begun to appreciate the 
true value of that diversion from established al-
gebraic tracks. It is part of my job here to become 
familiar with what my PhD students are up to, 
and part of my job to sample the seminars given 
by Part III students during the Part III seminar 

“I have come to appreciate how much 
the contact with students’ interests well 

outside my personal mathematical 
comfort zone continues to influence 

the direction of my research.”

Number of 5-faces of a seven-dimensional hypercube.
Largest order of a permutation of 14 elements.
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series. I have come to appreciate how much that 
contact with students’ interests well outside my 
personal mathematical comfort zone continues to 
influence the direction of my research. I also have 
come to realise that not many others, students, 
post-docs or faculty, make use of the diversity of 
interest within the Centre for Mathematical Sci-
ences (CMS) in Cambridge.

Most aspiring mathematicians correctly aim to 
train and work in a large department, with many 
others sharing their mathematical interests. The 
value of such an environment is beyond dispute. 
Nonetheless, the evident advantages of belonging 
to such an institution conceal a fatal flaw: there is 
often so much going on even within very narrow 
specification of subject that a conscientious stu-

dent or post-doc can reach a mathematical satu-
ration point while attempting to attend no more 
than those seminars and courses directly related 
to his or her own interests. It requires deliberate 
effort to make time and energy available to con-
nect with colleagues in other fields.

I strongly recommend making this effort. I don’t 
believe I possess any special genius that enables 
me to gain from external influences where oth-
ers wouldn’t. All in CMS could benefit. The op-
portunities are there, both within CMS and the 
university. The purpose of the collegial struc-
ture of the university is to provide smaller social 
groups in which pure mathematicians, engineers, 
and chemists might row together or share desks 
in a college orchestra. These colleagues are a ma-

The Centre for Mathematical Sciences
(CMS) Core in Cambridge

Centered triangular, square, 14-gonal and
8-gonal number. Number of ways to tie a tie.
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jor resource, an easy introduction to unfamiliar 
disciplines, and should be used as such. At CMS, 
colloquia, Part III seminars, even Happy Hour all 
provide opportunities to meet those working in 
different fields.

It is possible that some don’t make the effort 
through despair of ever gaining enough expertise 
in a different field to make a useful contribution. 
Of course full familiarity with the new field is de-
sirable, but the benefits of such external influenc-
es on research exist at all levels of understanding. 
I was not an apt student of physics. I never did 
achieve any deep understanding of field theory. 
I did listen lots, under-
standing perhaps only a 
small percentage of what 
was said. That small per-
centage was sufficient 
to generate research for 
over twenty years. More 
recently, under different 
external influences I have found myself toying 
with number theory and genetics. I will never be a 
number theorist or a geneticist, but aspects of the 
structure of the theory in those fields cause me to 
see the structures I have worked on in a fresh light, 
driving research in new directions.

How Politics can determine 
the Direction of Research
This is very stimulating. Inevitably we do the re-
search which excites us, and the bottom line of 
my argument in favour of diversification is that 
it is exciting. There are other important reasons 
why we might do well to diversify, and to be seen 
to diversify. A cashstrapped government is look-
ing hard at its spending on research. I would draw 
your attention to the EPSRC website, specifically 
the guide for fellowship applications:

We will not accept applications in 
areas outside of those identified below. 
Applicants should refer to the thematic 
programme priorities for additional details 
on the research areas we wish to appoint 
fellows in.

The listing of areas supported within mathemat-
ics is short: statistics and probability. That’s it, al-
though theoretical physicists may still apply under 
physics [1]. This together with the emphasis on 
social and economic impact in judging the value 

of research is worrying [2]. Beyond the obvious 
advantage of rapid return on investments, I am 
not clear on the rationale for the strategy. It is not 
clear to me who had the final say in these deci-
sions, politicians or mathematicians. It is not clear 
to me which answer to that question is more wor-
rying. I should hope that my colleagues are not so 
short-sighted. I am even less comfortable with the 
thought that politicians are taking control of the 
direction of mathematical research. The negative 
impact of the policy seems very clear: these are de-
cisions which will certainly force many of my best 
students to emigrate. It is difficult for me to un-

derstand how losing such 
able mathematicians will 
in any way enhance the 
strength of mathematics 
in this country.

Whoever make these de-
cisions, if they have failed 
to see the importance of 

fundamental mathematical research, perhaps we 
must take some of the blame. We know that math-
ematics provides the tools to think with, not just 
mathematical methods. If this is not obvious to 
those who make decisions, the remedy is in our 
hands. Placing greater importance on explaining 
our interests to the man on the street will help. 
However, the most incontrovertible demonstra-
tion of the usefulness of pure mathematics is the 
recognition by scientists in other fields of the im-
portance of our research in their subject. Engag-
ing with those in other fields matters.

Allowing other fields to influence the direction of 
our research and being available to those work-
ing in other fields as a resource are both part of 
the job. Working in as diverse a place as CMS is 
a privilege, and as with all privileges, comes with 
the responsibility to use it well. I am writing this 
in case no turkey arrives to disrupt your lives and 
deflect your course of study and research. Diver-
sify. It is part of the job. It may also save our jobs, 
but the bottom line is this: it is exciting and it is 
fun. Engage.

References
1. www.epsrc.ac.uk/funding/fellows/Pages/

areas.aspx
2. www.hefce.ac.uk/research/ref/

pubs/2011/01_11/01_11.pdf

“Whoever make these decisions has failed 
to see the importance of fundamental 
mathematical research. Mathematics 

provides the tools to think with, not just 
mathematical methods.”

Sum of the squares of the first four primes.
Sum of the divisors of the first ten integers. 87Can be written as 222 in base 6. Number of

metals in the periodic table. Happy number.
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Book Reviews
Algebra, Arithmetic, Anecdotes, Apologies…

Only number known whose square has no
isolated digits. Numbers of keys on a piano.

A Measure of All Things
Ian Whitelaw David & Charles, 2007 
ISBN 0-7253-2696-1 £9.99

Not just a collection of conversion tables but a chronicle of meas-
urement and its units throughout history. This a delightful book to 
dip into at random: fascinating anecdotes feature on every page, 
illustrated with a pleasing minimalist aesthetic. Accounts are given 
of both the natural and cultural phenomena that led to the adop-
tion of various measurement systems, as well as the philosophi-
cal and technical progress made in reaching those from which we 
benefit today.

Mathematics students will find the explanations of acceleration 
and related concepts redundant. Regardless, this book is excellent 
light reading and will make the perfect gift for those with casual 
interests in any science. Sean Moss

The Higher Arithmetic
Harold Davenport Cambridge University Press, 8th edition 2008 
ISBN 0-521-72236-0 £25.99

It confesses to be an introduction to number theory, but this book 
still has plenty of substance. There is overlap with material in Part 
II Number Theory, but a book such as this would be perfect for a 
Part I mathematician interested in acquiring some of the elemen-
tary number theory missing from the early parts of the mathemati-
cal tripos.

The number of editions through which this book has been is a tes-
tament to its quality. Topics are covered in an efficient manner but 
not at the expense of clarity. The book is well-suited to studying 
at one’s own pace: there are exercises, but in general they are not 
critical to the narrative, and there are many recommendations for 
further study on particular topics. Sean Moss
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Algebraic Number Theory and 
Fermat’s Last Theorem
Ian Stewart, David Tall AK Peters, 2002
ISBN 1-56881-119-5 £37.99

It is difficult to find a mathematics book that is both precise and in-
formal. This book has both qualities, giving historical background 
information while rigorously developing algebraic number theory. 
It is suitable for undergraduates meeting the subject for the first 
time. Definitions are motivated and important concepts are illus-
trated by computational examples.

The material in the first 10 chapters is approximately equivalent 
to the Part II Number Fields course, landmarks being ideals, 
Minkowski's Theorem, and the class-group. The remaining chap-
ters contain the proof of a special case of Fermat's Last Theorem 
(regular prime exponents), which uses all the previously intro-
duced ideas. They also touch on more advanced topics leading up 
to a sketch proof of its general version.

The extra material on elliptic curves and elliptic functions has lit-
tle to do with the rest of the book and feels a bit disconnected. 
However, the chapters on algebraic number theory are excellent 
for accompanying a university course, while the last part will whet 
the reader's appetite for more. Philipp Kleppmann

Equals 81 + 92. Eleventh Fibonacci number F11,
that satisfies 1/89 = ∑∞

n=1 FN × 10–(n+1) = 0.011235…

A Mathematician’s Apology
G.H. Hardy Cambridge University Press, reprinted 2008  
ISBN 0-521-42706-7 £14.99

A rare glimpse inside the mind of creative genius. Underlying 
Hardy’s “defence” of his life and work is really the outpouring of a 
lifetime’s hopes and frustrations. The maths in it is basic but worth-
while, however, the book is a tremendous success for its sheer hu-
manity. Mathematicians and non-mathematicians alike will find 
themselves drawn towards the author’s personality and feeling sin-
cerest empathy with him.

The foreword by C.P. Snow is not to be skipped – it takes up about 
half the volume – it does much to put Hardy’s soliloquy into bio-
graphical and historical context. Very light on mathematical tech-
nicalities, this book is about the human interaction with mathe-
matics. While we may recognize Hardy’s sadness, the connection 
one feels to the mind of genius is ultimately most uplifting.
 Sean Moss
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Movie Reviews
Genius, Insane, Blackmail, Murder…

A Beautiful Mind (2001) 
Russell Crowe, Ed Harris, Jennifer Connelly

This movie tells the story of John Forbes Nash (Russell Crowe): 
from Princeton University, where he searches for his truly original 
idea, to MIT, where he teaches calculus and marries one of his stu-
dents Alicia (Jennifer Connelly), to winning the Nobel Prize.

When Nash is hired by the department of defence to find secret 
messages hidden in magazines and newspapers, and when he feels 
increasingly threatened by foreign agents, it becomes clear that he 
is schizophrenic and many parts of his life are nothing but hal-
lucinations.

In between reality and imagination, genius and madness, love and 
reason, this quadruple Academy Award winning movie combines 
tension, great acting, fantastic music and a thrilling storyline. PJL

Good Will Hunting (1997) 
Robin Williams, Matt Damon, Ben Affleck

MIT professor and Fields Medallist Gerald Lambeau is stunned 
when he sees rebellious janitor Will Hunting (Matt Damon) solve 
the difficult maths problems on the hallway blackboard. When 
Will is sentenced to jail, Lambeau arranges for him to instead 
study mathematics and see a therapist (Robin Williams). While 
finding themselves, and what they really want, the two have to deal 
with expectations and defence, love, abuse and their past.

Full of emotions, passion and charisma, this motivating movie was 
nominated for nine Academy Awards, and won two.
 PJL

Number of degrees in a right angle. Number of edges
of a truncated Icosahedron. Length of a football match.
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Proof (2005) 
Gwyneth Paltrow, Anthony Hopkins, Hope Davis

Catherine (Gwyneth Paltrow) lives with and cares for her father 
Robert (Anthony Hopkins), a brilliant mathematician suffering 
from mental illness. After Robert’s death, she  is confronted with 
one of her father’s students, who suspects the solution to a great 
mathematical problem in the old notebooks, as well as her sister 
(Hope Davis), who doubts Catherine’s own mental state. Did she 
inherit both genius and madness from her father?

The movie, like many others, seems to suggest that scientific genius 
and madness are intrinsically linked – is there nothing else inter-
esting about mathematics that is worth filming?

Though certainly worth watching, Proof doesn’t convey tension, 
excitement, or any ideas and feelings to walk away with. PJL

Fermat’s Room (2007) 
Alejo Sauras, Ariadna Cabrol, San Yélamos

Four leading mathematicians are invited to spend a weekend solv-
ing one of the greatest enigmas of all times. With the door shut and 
the walls slowly moving closer, the real enigma is what connects 
them and why somebody wants to kill them…

The film starts with the words ‘everybody who doesn’t know what 
a prime number is should leave now’, though most of the puzzles 
presented are rather trivial. While the film doesn’t quite live up to 
its Hitchcock models, the hidden hints and conversations make 
the film exciting and entertaining. Good actors, a fantastic set and 
great film music create a thrilling atmosphere.

Although only available in Spanish, it is easy to follow all conversa-
tions with English subtitles. PJL

21 (2008) 
Jim Sturgess, Kate Bosworth, Kevin Spacey

Based on a true story: six gifted MIT students, led by the eccentric 
mathematics professor Micky (Kevin Spacey), spend their week-
ends in Las Vegas and use a complex set of signs and signals to 
beat Blackjack. However the glamorous (and highly profitable) 
life changes dramatically when both security chiefs and Micky de-
mand their money.

References to Monty Hall and Newton-Raphson make the movie 
entertaining for mathematicians, though card counting doesn’t re-
quire any advanced mathematical skills. The plot, however, is full 
of clichés and very predictable; it fails to build up tension or con-
vey the thrill of gambling. PJL

Sum of the squares of the first six integers.
Smallest pseudoprime satisfying 3n ≡ 3 mod n.



92

Solutions

1. Attitude Adjuster
Note that the raptor’s acceleration is bounded, whilst yours is not. As is standard, we approximate the 
raptor and you as point particles. Hence run away on the you-raptor line at 6 m/s until it is close to 
you. Dodge sideways by epsilon at the appropriate moment. The Raptor must miss as its acceleration is 
bounded. Return to be directly behind the raptor by moving epsilon back again (higher order effects 
from the Raptor turning during this manoeuvre can be ignored for epsilon small enough.). Repeat this 
process. Since the Raptor ran more than 40 m to get to the point where you wiggle, it will run over 40 
m before coming to a halt (for epsilon small). Hence this never terminates, and you can evade the rap-
tor indefinitely.

2. Funny, It Worked Last Time…
Yes. The simulation showing this is rather too large for these margins.

3. What Are The Civilian Applications?
Sum of all entries in the table is [0.5 n (n+1)]2 = 2n3 + 4n2 + 2n. Solved by   n = 0, −1 or 8. Hence Mi-
croraptors have 8 digits.

4. The Precise Nature of the Catastrophe
Write down the obvious matrix and find its eigenvectors; considering vectors as (Z, R, P):

v1 = (0, −1, 1)   e1 = 2,          v2 = (3, 2, 1)   e1 = −1,          v3 = (−1, 0, 1)   e3 = 1.

So the desired end state is proportional to (6, 0, 0) = 2v1 + v2 − 3v3. log 3 days earlier, this would be 
2/9v1 + 3v2 − v3 = (10, 52/9, 20/9). Hence we wish to release 52/90 P = 26/45 P raptors.

5. Another Victim Of The Ambient Morality
0 questions.

1.  Tell the PhD students that there is free food in Core.
2.  Choose a door at random, and tell the law student to go through.
3.  If the lawyer dies, you want the other room.

Another Fine Product from
the Nonsense Factory…

Number of faces of the snub dodecahedron and
highest number of faces of any Archimedean solid.
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6. Me, I'm Counting
The number of even arrangements – the number of odd arrangements is:

since n is even. Thus the number of even arrangements is greater than the number of odd ones. 

7. Now We Try It My Way
Assume all at the north pole for convenience. Assume a human is 50 kg distributed over a 0.5 m × 0.25 
m rectangle (ignoring height which is irrelevant). Assume 10 rad/s angular velocity (a little under 2 Hz)

Moment of inertia of one person = 60 kg × (0.52 + 0.252) m2/3 = 25 kgm2.
Angular momentum of population = 6 × 109 × 25 × 10 = 1.5 × 1012 kgm2/s.
Earth moment of inertia = Me × 2/5 R2 ≈ 8π / 15 × 5000 R5 ≈ 8000 (6.4 E6)5 = 233 × 1028 ≈ 8 × 1037 kgm2.
So angular velocity down ≈ 5 × 10−26 / s.
ω = 2π / 86400 = π / 43200 ≈ 1/14400.
Day length = 2π /(ω − 5 × 10−26) = 86400 + 5 × 10−26 × 14400 × 86400 ≈ 86400 + 6 × 10−17 s

So the answer is 6 × 10−17 s. Any approximations leading to an answer of the right vague order are good. 
(Results within 3 orders of magnitude were deemed acceptable.)

8. Experiencing A Significant Gravitas Shortfall
1. 10%: CMS Core,
2. 60%: B pavillion,

3. 30%: the INU,
4. 80%: the UL,

5. 0%: an ACME Klein Bottle.

This question was largely marked on the justifications given. Glass in the CMS was deemed to be far 
weaker in our analysis than in the general analysis of participants; many considered B pavillion to be 
the most secure, or felt that mathematicians could take on raptors in toe to claw fighting.

9. Just Read The Instructions
Another long simulation. The correct answer was: 1, from the bottom row, 3rd from the right. If you 
don't get this answer, then your raptors are insufficiently ingenious.

10. It’s Character Forming
Elephant ≈ 5000 kg, Pool ≈ 2500 m3, Blink ≈ 0.3 s.
Power = kgm/s3  ⇒ new unit is ≈ 5000 × (2500)1/3 / 0.33 = 2500000 W
Kettle ≈ 2kW so 1250 required.

11. Sleeper Service
The distance constraint implies that the raptors form a Hamming code on 7 bit sequences. Famously 
this allows for 16 raptors.

12. Ultimate Ship The Second
The vast majority of participants picked A. They should have used psychology.

This question has as open a mark scheme as Tripos.
Specifically, we looked at them all and decreed the winner.

Can be written as 333 in base 5. Mertens function
returns 0 for 93. Sum of the integers from 13 to 18.
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Smith number, since the sum of its digits equals the
sum of its prime factors excluding 1. 94! – 1 is prime.
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We would like to take this opportunity to ask for your opinion about Eureka, in par-
ticular the changes we have made to this issue. Please answer the questions below 
and return this form to the address on the back. Subscribers within the University of 
Cambridge can use the University Messenger Service (UMS) free of charge.

Are you a member of the Archimedeans? If so, when did you join?  � Yes, joined in _____
 � No

What subject are you studying (did you study) at university?  � Mathematics
 �  ______________

Which Issues of Eureka have you read in the past?  �  __
 � 58

 �  __
 � 59

 � 57
 � 60

Articles about which topics are you most interested in reading in Eureka?
 � Pure Maths
 � Applied Maths

 � Recreational Maths
 � Philosophy and Logic

 � Statistics
 � Biographies

Which of these additional features do (would) you enjoy reading in Eureka?
 � About the Archimedeans
 � Problems Drive
 � Maths Pictures and Art

 � Book/Movie Reviews
 � Jokes and Quotes
 � Scientific Poetry

 �  ______________
 �  ______________
 �  ______________

Please rate the following parts of this issue of Eureka.
Cover and Layout
Selection of Articles
Illustrations and Pictures
Problems Drive
The Showroom
Book and Movie Reviews
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Do you prefer the colourful, magazine like layout in this issue, or 
the more traditional one in previous issues.

 � New layout
 � I don’t mind
 � Previous layout

Are there any articles you particularly enjoyed reading?

Do you have any other comments?

Thank you very much for your feedback. You can subscribe to Eureka
or request more information about contributing on the back.
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