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Foreword
by Ian Stewart

When I arrived at Churchill College in 1963, I had already heard of Eureka, 
thanks to the inimitable Martin Gardner, who had mentioned it in his celebrated 
Mathematical Games column in Scientific American. Martin died in 2010, and trib-
utes poured in from the mathematical community. The most apt summary of his in-
fluence is a quote attributed to Ron Graham: “Gardner turned thousands of children 
into mathematicians, and thousands of mathematicians into children”. He did both to 
me, in that order.

Anyway, on arriving in Cambridge I hastened to join the Archimedeans, and by a 
quirk of fate ended up editing Eureka. The previous editor, Peter Lee, was at Chur-
chill, and also my Director of Studies: he took steps to keep it in the family. I found a 
note from him in my copy of issue 27, 1964, the 25th Jubilee issue. It reads: “And the 
best of British luck for you next time.”

Now, I may be biased, but I think Eureka is a brilliant magazine. Many of its arti-
cles are classics. In issue 13 (1950) Cedric A. B. Smith, under his pseudonym Blanche 
Descartes, answered the 12-ball weighing puzzle in a poem, whose crux was the lines

F AM NOT LICKED
MA DO LIKE
ME TO FIND
FAKE COIN

Exercise for the reader: work out what the devil I’m rabbiting on about.

I also remember vividly the article “Train Sets” by Adam Chalcraft and Michael 
Greene (issue 53, 1994), which interpreted the Halting Problem for Turing machines 
in terms of the layout of a toy railway track. Conclusion: there is no algorithm to 
predict, for any layout, whether the train will eventually reach the station. I’m pretty 
sure this connection can be turned into a dynamical system with undecidable dynam-
ics, and may even write this up some time. It nicely complements fundamental work 
on this question by Cristopher Moore of the Santa Fe Institute.

When I left Cambridge to do a PhD at Warwick, my experience with Eureka 
helped when a group of us founded our own mathematical fanzine, Manifold, which 
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Gardner also mentioned occasionally. Through a series of coincidences too tortuous to 
relate here, I ended up becoming the fourth person to write Gardner’s column, now 
renamed Mathematical Recreations. So I have the Archimedeans, and Eureka in par-
ticular, to thank for my involvement in the popularisation of mathematics.

Manifold folded after 20 issues and 12 years. Eureka has greater longevity, and is 
still going strong, with 60 issues over 71 years (the first issue was in 1939). I’m sure 
that by 2050 or earlier it will have reach its 100th issue, though by then it will 
probably exist in some version of William Gibson’s cyberspace, not on that funny 
stuff they used to call “paper”, or even in a (shock, horror) machine.

It is a privilege and a pleasure to celebrate the 60th issue of Eureka, and to thank 
all of the editors, over the last six decades, for making the mathematical world a 
more pleasant and interesting place. To quote the ancient Egyptian phrase:

Life, Prosperity, Health!
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Oh let us raise a foaming beaker,
Of Nescafe in cup styrene,
To praise the 60th Eureka,

No finer journal can be seen,
Nor greater pleasure does my post afford,

Than sending blessings from the Faculty Board.

Professor Tom Körner,
Chairman of the Faculty Board

Faculty of Mathematics



Editorial
60 Issues of EUREKA

The number 60 has an important meaning in many aspects 
of life: there are 60 minutes in one hour, 60° in an equilateral 
triangle and 2×6 months in a year. This is a legacy of the 
Babylonian number system, which first appeared around 3500 
BC. As with Roman numerals, all numbers from 1 to 59 can be 
represented by only two symbols   (1) and    (10); an essential 

improvement over previous number systems requiring a different symbol for each 
number. The Babylonians were also the first to use a positional number system: all 
numbers bigger than 59 have multiple digits and decimal digits were written as mul-
tiples of 1/60. Base 60 was chosen because of the large number of divisors: 60 is the 
smallest number divisible by all integers from 1 to 6.

60 was also important in many other cultures: the 
Chinese calendar, for example, is based on the Sexa-
genary Cycle ( ). This cycle arises since 60 
is the lowest common multiple of 10 and 12. Tradi-
tionally, the Chinese count years using a 10-year 
cycle, called the 10 Heavenly Streams (consisting 
of ying, yang combined with the five elements 
earth, water, wood, fire) and using a 12-year cycle, 
called the 12 Earthly Branches (consisting of the 12 
animal signs). 2010 is the year of the tiger, yang and 
metal − the current sexagenary cycle will finish in 2043.

In Christian culture, 6 has a rather dark meaning and 666 is even called the 
“Number of the Beast”. The number 666 appears several times in the Bible, and in 
other old scripts. The ancient writers probably didn’t know that 666 is related to the 
golden ratio by φ = −2 sin(666°) = −2 cos (6×6×6°), but maybe they were aware of 
some of the following “scary” relationships:

  ϕ(666)  =  6 × 6 × 6, ϕ is Eulers Totient Function
  666  =   36 − 26 + 16,
  666  =  1 + 2 + 3 +  + 36,
  666  =  22 + 32 + 52 + 72 + 112 + 132 + 172,

4 Eureka 60

1 2 3 4 5 ...

10 20 30 40 50

22 62 72



666  =  1 + 2 + 3 + 4 + 567 + 89  =  123 + 456 + 78 + 9.

In addition, is is possible that people were fascinated by 666 since in roman numerals 
it can be written as DCLXVI, using all letters other than M.

Do you think it is an accident that there are 6 types of quarks and 6 types of lep-
tons in the standard model of particle physics? Or that the smallest non-abelian 
group has order 6 and the smallest non-abelian simple group has order 60? It is even 
said that there are 6 degrees of separation between any two human beings on earth!

Hopefully those disturbing facts about 6 don’t prevent you from reading this jour-
nal, which includes many interesting articles about mathematical topics, as well as 
problems, book reviews, art, poems and humour. We are delighted to publish articles 
by Ian Stewart, who was editor of Eureka while studying at Cambridge, Clifford 
Pickover, well known science (and science fiction) author and columnist, and David 
Tong, fellow of Trinity College. In addition, many students have submitted articles 
about a variety of interesting and exciting topics.

Over the past 60 issues, Eureka has developed from a magazine read by mathema-
ticians in Cambridge to a journal that is known all over the world. During the last 
year we received letters and emails from India, Iran, South Korea, Germany, Austra-
lia, Saudi Arabia, the United States and many other locations – unfortunately we 
couldn’t publish all of them!

We very much hope that you enjoy reading this jubilee–issue of Eureka.

Philipp Legner,
St John's College
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Text
Text

This term has been one of the most successful 
in the history of the Archimedeans. The com-
mittee was very busy during the summer, de-
signing a new logo and a new website which has 
proved popular with members. The Freshers 
Fair at the start of term has been our best ever, 
with the ‘1 minute challenge’ and free give-
aways bringing in over 150 new members and 
many more joining our mailing list.

Our lectures this tear are focussing on the Mil-
lennium Prize Problems; the first of a series of 
talks was given by Prof. Ben Green on the 
Riemann Hypothesis. The talk was followed by 
our traditional Fresher’s Squash, and the provi-
sion of pizza seem to have attracted twice the 
usual number of students.

The other highlight of the term was Prof. 
Bollobás talk on ‘Cambridge Gems‘ — famous 
theorems proved by Cambridge Mathematicians, 
from Hardy and Littlewood to Erdős. We even 
had to move to a bigger lecture theatre because 
it was so well attended. After the talk, Prof. 
Bollobás and his wife generously invited all of us 
to their house for cheese and drinks. Needless to 
say, we are indebted to them for their hospitality 
in hosting such a wonderful party.
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The end of Michaelmas Term is coming closer and closer, and we are looking for-
ward to many interesting talks this and next term, as well as our triennial dinner.

Being on the committee has been a fun and ultimately rewarding experience. If 
you are interested in getting involved, either now or in the future, please get in touch. 
It only remains for me to thank the current committee for the efforts, and the mem-
bers and subscribers to Eureka for their continued support.

Lovkush Agarwal,
President 2010-2011

The Committees 2009–2010 and 2010–2011

President: Tom Ducat (Fitzwilliam) Lovkush Agarwal (Corpus Christi)
Vice President: Gar Goei Loke (Fitzwilliam) Reza-ul Karim (Corpus Christi)
Secretary: Khai Xiang Chiong (Downing) Diana Zinchenko (Murray Edwards)
Treasurer: Helge Dietert (Queen's) Philipp Kleppmann (Corpus Christi)
Registrar: Urs Schoenenberger (Fitzwilliam)
Publicity:  Fangzhou Liu (Sidney Sussex)
Webmaster:  Zhu Gong (Lucy Cavendish)
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Calendar of Events

Michaelmas Teerm 2010

14 October The Riemann Hypothesis − a talk by Professor Ben Green (DPMMS)
Find out more about the most famous unsolved problem in Maths.

5 November Cambridge Gems − a talk by Professor Bela Bollobas (DPMMS)
A rare opportunity to hear the winner of the Senior Whitehead 
Prize, holder of an 'Erdos Number'  of 1 and simply one of the best 
speakers in  Mathematics. The talk is about three results by some of 
the most eminent Cambridge mathematicians of the last century.

12 November Tuning with Turing − a talk by Professor Andrew Thomason (DPMMS)
What is a Turing machine? And is a Turing Machine smarter than  a 
10 year old?  We shall try to answer these questions and to offer a 
brief panorama of the mathematics behind computers.

19 November Yang-Mills Theory − a talk by Professor David Tong (DAMTP)
YMT used geometrical structures to describe elementary particles, 
but there are still some problems regarding the “mass gap”.

TBC Annual Dinner

Lent Term 20111

21 January Diophantine Equations − a talk by Professor Samir Siksek (Warwick)
In his unique and appealing style,  Siksek will convey his own  joy for this 
intriguing area of mathematics which has been studied for millennia.

4 February The Hodge Conjecture − a talk by Professor Richard Thomas (Imperial)
Discover how the areas of algebra and geometry are deeply connected.

25 February P vs NP Complete − a talk by Professor Anuj Dawar (Computer Lab)
The practical implications of this problem affect all areas of mod-
ern life, from data encryption to curing cancer!

TBC The Poincaré Conjecture − a talk by Simon Donaldson (Imperial)
Who can tell you more about the only solved Millennium problem 
them a member of the advisory boards of the Clay Foundation.

TBC Navier-Stokes Equation − a talk by Professor Hubert Huppert (DAMTP)
Find out about these equations, whose deep secrets will lead to the 
understanding of all ‘wakes’ of phenomenon in fluid dynamics.

TBC Annual General Meeting

Summer Term 2011

TBC Science Societies Garden Party

Please visit out website http://www.archim.org.uk/ for information about locations 
and times, as well as events such as the Fresher’s Squash, Improvisational Com-
edy Ents or the Annual Problems Drive.



The Archimedeans

Problems Drives 2009 and 2010

Question 1 (2009)
A country consisting of 100 states, each having a population of 100, is having a presi-
dential election, with two candidates running.  The election runs in two stages – first 
by state and then nationwide – and the rules are below: 

State voting: 
• If fewer than 75 votes are cast, the state doesn’t vote in the nationwide election. 
• If at least 75 votes are cast, the state casts a single vote for the candidate with 

the majority of votes. 

Nationwide voting: 
• If fewer than 75 states cast votes, the election is invalid (and anarchy ensues). 
• If at least 75 states cast votes, the candidate with the majority wins. 

Let A be the least percentage of the population that could vote for a candidate who 
goes on to win and B the greatest percentage of the population that could vote for a 
candidate who does not go on to win. What is A – B? 

Question 2 (2009)
Find the maximum value of 

f(x) =
√

x4 − 5x2 − 8x+ 25−
√

x4 − 3x2 + 4

Question 3 (2009)
Fill in the two blanks of each of the following sequences: 

(a) 3, 5, 11, 15, 21, __, __ 
(b) __, 12, 6, 3, 5, 4, __ 
(c) 0, 1, 8, 81, 1024, __, __ 
(d) 1, 2, 4, 7, 8, __, __ 
(e) 4, 6, 12, 18, 30, __, __ 

Question 4 (2009)
If a positive number has an even number of 1’s in its binary expression, then it’s said 
to be a magic number.  Find the sum of the first 2008 magic numbers (as a decimal).
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Question 6 (2009)
You walk through the apple orchard illustrated below, where the numbers represent 
the number of apples in each tree.  You start at A at and must always move to the 
right at each step, but may choose to stay in the same row, or move one up or one 
down.  You must also end at B.  Furthermore, every time you move between columns 
you have a 50% chance of being caught by the farmer, in which case you will lose all 
the apples you are carrying, but will be allowed to continue (don’t ask why!).  If you 
choose an optimal route through the orchard, what is the expected number of apples 
you will have at B? 

  1 5 0 6 1 4 
  3 6 9 1 2 5 
  4 9 8 2 0 2 
 A 5 1 4 3 4 5 B 
   3 3 2 1 9 2 
  2 2 5 7 3 7 
  9 1 2 8 9 8 

Question 7 (2009)
Find the integer part of 

x = 1 +
1√
2
+

1√
3
+

1√
4
+ ... +

1√
1010025

(Hint: 
√
1010025  = 1005) 

Question 8 (2009)
We have nine balls of the same size in a box, labelled 1, 2, 3, …, 9.  Richard picks up 
a ball randomly, labelled with the number x, and puts the ball back in the box.  Ed 
then takes out a ball, which has number y on it.  Find the probability that

x − 2y + 10 > 0.

Question 9
Match the mathematician to his book: 

Carl Friedrich Gauss
Isaac Newton

Leonhard Euler
Daniel Bernoulli
Gottfried Leibniz

Vollständige Anleitung zur Algebra
Explication de l’Arithmétique Binaire

Arithmetica Universalis
Hydrodynamique

Disquisitiones Arithmeticae
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Question 10 (2009)
A, B, C and D are four points on a given circle 
(clockwise), and AD ∩ BC = Q and AB ∩ DC = P 
(i.e. AD and BC intersect at point Q outside the cir-
cle, while AB and DC intersect at point P outside the 
circle).  Moreover, E and F are two points on the cir-
cle such that PE and QF are tangent to the circle. 
Now, given that |QF | = 17 and |PE | = 19, find |PQ | 
(here |QF | denotes the distance from Q to F, etc).

Question 12 (2009)
Choose an integer 0 ≤ n ≤ 3.  If the number of teams choosing your number is con-
gruent to n mod 4 then you will get 1

n+1
 points, otherwise you will get nothing.

■

Question 2 (2010)
An economical carpenter had a block of wood measuring eight inches long by four 
inches wide by three and three-quarter inches deep. How many pieces, each measuring 
two and a half inches by one inch and a half by one inch and a quarter, could he cut 
out of it? (Please offer an explanation of the cutting process.)

Question 3 (2010)
Please arrange the following numbers in increasing order (years are to be interpreted 
in the Gregorian calendar):

 A the magic constant of a 16×16 normal magic square
 B the number of seconds in a millifortnight

 C the smallest number expressible as the sum of two positive cubes in two 
different ways

 D the year of the foundation of Archimedeans
 E the year of Isaac Newton's death
 F (rest mass of a proton) / (rest mass of an electron)
 G great gross

Question 4 (2010)
Smith, Brown and Jones agree to fight a three-way pistol duel. After drawing lots to 
determine who fires first, second, and third, they take their places at the corners of 
an equilateral triangle. It is agreed that they will fire single shots in turn and con-
tinue in the same cyclic order until two of them are dead. At each turn the man who 
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is firing may aim wherever he pleases. It is well-known that Smith is a perfect shot, 
Brown is 80% accurate, and Jones hits his target precisely half the time. Assuming 
that all three adopt the best strategy, and that nobody is killed by a wild shot not 
intended for him, determine the survival chances of each of the three duelists.

Question 5 (2010)
In the diagram (not to scale) you see the 
ellipse described by the equation

(x− 20)2

20
+

(x− 10)2

10
= 2010.

Let R i denote the four areas bounded by 
the ellipse that are in the first, second, 
third, and fourth quadrants respectively. 
Find R 1 − R 2 + R 3 − R 4.

Question 6 (2010)
Each of the 9 squares in this diagram contains a digit between 1 and 9, all the digits 
are distinct, and all the equations are satisfied. Fill in the square.

− =

×

=

=

=

/

+

Question 7 (2010)
In a three-by-three matrix of squares, an ordinary six-sided die is placed in the centre 
square. On a move you may roll the die to an adjacent cell. The cells of the matrix 
are labelled (1,1) through (3,3); the die is therefore in cell (2,2). The die is oriented so 
that 1 is on top, rolling it into cell (2,1) will place 2 on top, and rolling it into cell 
(3,2) will place 3 on top. Roll the die into cell (3,1) so that 6 is on top using as few 
moves as possible.

Question 10 (2010)
There are 8436 steel balls, each with radius 1 centimetre, stacked in a tetrahedral 
pile, with one ball on top, 3 balls in the second layer, 6 in the third layer, 10 in the 
fourth, and so on. Determine the height of the pile in centimetres.

12 Eureka 60
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Question 8 (2010)
Find the next two members of the following sequences:

(1) 1,1,4,9,25,64,__,__,…
(2) 1,11,21,1211,111221,__,__,…
(3) 1,2,4,7,28,33,198,__,__,…
(4) 3,3,5,4,4,3,__,__,…
(5) 1,2,5,10,20,__,__,…
(6) 1,11,4,__,__

Question 11 (2010)
Below are three lists, containing a work, its publication date, and its author. Match 
the correct triples.

1202
1644
1705

Carl Friedrich Gauss
René Descartes

Augustin-Louis Cauchy

The Mathematical Analysis of Logic
Book of the Abacus

Principia philosophiae

1724 Abraham De Moivre An Historical Account of Two Notable              
Corruptions of Scripture

1730
1754
1801
1823
1847

Leonardo Fibonacci
George Boole
James Stirling
Edmond Halley
Sir Isaac Newton

Synopsis Astronomia Cometicae
The Differential Method

Annuities on Lives
Disquisitiones Arithmeticae

Le Calcul infinitésimal

Question 12 (2010)
Write the rank in which you think your team is with the scores up to, but not includ-
ing, this question. A correct answer is worth 1 point; an incorrect, 0.

■

The 2010 Problems Drive was written by Michael Donaghy and Elena Yudovina.
Hints and solutions to the questions can be found on page 76.
The full problems drive is published on our website.
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The Archimedeans

1-Minute Challenge

The following 20 questions were set by the Archimedeans 
as a 1-minute challenge on the 2010 Fresher’s Fair. The 
two winners of our amazing Klein Bottles were David 
Phillips (Queen’s) and Ameya Velingker (Trinity) — they 
managed to solve 12 of the problems correctly.

1. 1 + 1 = ?

 (a) π 3 (b) 0 (c) 
√
4  (d) 17

2. 26 = ?

 (a) 64 (b) 16 (c) 128 (d) 32

3. What is the next number in the following sequence: 2,3,5,7,…?

 (a) 8 (b) 9 (c) 10 (d) 11

4. There are 5 pens on the table. You take two. How many do you have?

 (a) 2 (b) 1 (c) 3 (d) 5

5. 789 + 456 = ?

 (a) 1335 (b) 1245 (c) 1235 (d) 1345

6. Spot the odd one out:

 (a) 64 (b) 81 (c) 125 (d) 8

7. 221
3

 = ?

 (a) 17 (b) 13 (c) 15 (d) 19

8. What is the least number of coins needed to make £3.87?

 (a) 5 (b) 7 (c) 8 (d) 6
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9. What is the solution of the following equation: 3x − 2 = 2x + 1?

 (a) − 1 (b) 35  (c) 3 (d) − 15

10. What is the next number in the following sequence: 2,5,10,17,26,…?

 (a) 37 (b) 35 (c) 41 (d) 42

11. 
∫∞
−∞ xe−e−x2

dx  = ?

 (a) √π  (b) 1 (c) ∞ (d) 0

12. What is the length of the side marked with x in the right-angled triangle?

 (a) 
√
7  (b) 5 (c) 

√
6  (d) 

√
8

13. (3!)!
(3!)2  = ?

 (a) 2
3
 (b) 1 (c) 40 (d) 20

14. Differentiate  eex  with respect to x.

 (a) eex (b) exeex  (c) xexeex  (d) ee
ex

15. What are the solutions of 2x 2 − 3x − 9 = 0?

 (a) 3, − 23  (b) 3, 23  (c) − 3, 23  (d) − 3, − 23

16. Which of the following numbers is the largest?

 (a) 6 (b) e 2 (c) 4 
√
2  (d)  23 π2

17. 
√
2
(
cos2(π6 )− 1

2

)
 = ?

 (a) 
√
2  (b)  π√

2
 (c) 1

2
√
2
 (d) −

√
2
4

18. How many rational roots does sin(
√
2πx) have?

 (a) 1 (b) 0 (c) 2 (d) ∞

19. How many 3-digit numbers are there with only even digits?

 (a) 125 (b) 450 (c) 451 (d) 100

20. What is the right answer to this question?

 (a) a (b) c (c) d (d) b

 The Archimedeans 1-Minute Challenge 15



The fundamental Laws of the Universe?
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Physics and the Integers

Dr David Tong, DAMTP

Leopold Kronecker famously said: “God made the integers, all else is the work of 
man.” In the context of late 1800s mathematics, this was a controversial viewpoint; a 
polemic against developments such as irrational numbers, Cantor’s set theory and the 
Bolzano-Weierstrass theorem. It did not make Kronecker a popular man.

More than a century later, no mathematician would deny the importance and util-
ity of the developments that Kronecker railed against. Yet I suspect that many har-
bour some sympathy for his statement. The integers hold a special place in the heart 
of mathematics. Many of the most famous unsolved conjectures relate to the proper-
ties of the primes. More importantly, the integers are where we start mathematics: 
they are how we count.

In this essay I would like to view Kronecker’s quote through the lens of theoretical 
physics. Tested against our best theories of Nature, I will argue that the statement is 
wrong. Experimentally, falsifiably, wrong.

It is not obvious that the integers have any place in physics. The counting that is 
evident in mathematics is not so easy in the real world. I was told at school that 
there are 9 planets in the  solar system. Now there are 8. Or maybe 13. As this ex-
ample shows, the problem of finding the integers in Nature lies not in the counting, 
but rather in the defining. The Kuiper belt contains objects ranging in size from a 
few thousand kilometers to a few microns. You can only decide which objects are 
planets and which are merely lumps of rock if you employ a fairly arbitrary definition 
of what it means to be a planet. To find the integers in physics, we need Nature to 
provide us with objects which are naturally discrete.

Fortunately, such objects exist. While the definition of a planet may be arbitrary, 
the definition of an atom, or an elementary particle, is not.  Historically, the first 
place that the integers appeared was in the periodic table of elements. The integers 
labelling atoms − which, we now know, count the number of protons − are  honest. 
Regardless of what developments occur in physics, I am sure that we will never ob-
serve a stable element with 

√
500  protons that sits between titanium and vanadium. 

The integers in atomic physics are here to stay.
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In fact, once we are in the atomic world, the integers are everywhere. This is what 
the “quantum” of quantum mechanics means. For example, you learn in the second 
year course that the spectrum of energy levels of hydrogen are given by E = −E0/n2 
where E 0 is the ground state energy and n ∈ . More subtle quantum effects can 
even coax the integers to appear in macroscopic systems: the quantum Hall effect is a 
phenomenon that occurs in semi-conductors that are placed in a magnetic field. The 
Hall conductivity, which describes how current flows perpendicular to an applied elec-
tric field, is given by σ = n(e2/h) where e is the electron charge and h is Planck's 
constant and, once again, n ∈ . These integers have been measured to an accuracy 
of one part in a billion, one of the most precise experiments in all of physics.

While the integers undoubtedly arise in physics, they do not have the same status 
of building blocks that they do in pure mathematics. They are not inputs of quantum 
theory, they are outputs. There are no integers in the Schrödinger equation describing 
the electron orbiting a proton. The fact that the solutions and the energy levels are 
labeled by integers is due to a normalisation condition, imposed so that the wave-
function has a physical interpretation. Expressed more mathematically, the integers 
arise from the eigenvalue problem for continuous Hermitian operators. In physics, the 
integers are an example of an emergent quantity, no more fundamental than the con-
cepts of temperature, smell, or the offside rule.

Perhaps more surprisingly, the existence of atoms − or, indeed, of any elementary 
particle − is also not an input of our theories. Despite what you are told in high 
school and popular physics books, Democritus was wrong. The basic building blocks 
of Nature are not discrete particles, such as the electron or quark. Instead our fun-
damental laws of physics describe the behaviour of fields, continuous fluid-like objects 
spread throughout space. The electric and magnetic fields are familiar examples, but 
our best description of reality adds to these an electron field, a quark field, and sev-
eral more. The objects that we call fundamental particles are not fundamental. In-
stead they are ripples of continuous fields, tied into apparently discrete lumps of en-
ergy by the framework of quantum mechanics1. In this way, the discreteness of the 
atomic world emerges2. The framework which describes how the fields move is called 
quantum field theory. The specific quantum field theory that explains our world is the 
crowning glory of 400 years of scientific investigation. Unfortunately it has a rubbish 
name: it is called the Standard Model.

So much for the integers in the known laws of physics. But what about the laws of 
physics that we have yet to discover? The Standard Model is certainly not the last 
word and it is a common speculation that when we understand Nature on some 
deeper level it will turn out to be based on discrete mathematics such as the integers. 
Such speculation often comes from computer scientists who envision that the laws of 
physics will, at heart, be reduced to something akin to a computer algorithm.  Is this 
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likely? Of course, no one knows.  Here I would like to draw attention to an important 
open problem in the Standard Model that is little discussed but which may have 
bearing on the issue.

Before trying to find new laws of physics that are discrete, it would seem sensible 
to attempt to write down the known laws of physics in a manner which is at least 
compatible with a discrete underlying structure. Such a formulation is not just of 
academic value. The equations underlying quantum field theory are hard and humans 
are not very good at solving hard equations. Computers are much better. To formu-
late the laws of physics in a discrete manner means to write them in such a way that 
they could be simulated on a computer. As you may imagine, this is important in all 
areas of physics and a great deal of effort has gone into it. It is therefore rather sur-
prising to learn that no one knows how to formulate a discrete version of the Stan-
dard Model.

At first sight, this seems very strange. All the laws of physics that you learn as an 
undergraduate are formulated in terms of differential equations and, while it may be 
difficult in practice to get reliable numerical results for certain partial differential 
equations, there is no problem of principle. One simply needs to replace continuous 
derivatives with finite differences. However, the mathematics that underlies quantum 
field theory is not the differential equations of classical physics, but instead an object 
known as the path integral. First introduced by Feynman, this is a functional integra-
tion – meaning that one doesn't integrate over a domain in, say, the real numbers, 
but instead over a domain of functions. This means that one must perform an infinite 
number of integrations.

For physicists the path integral has been the weapon of choice for half a century. 
The intuition gained in learning to manipulate these objects has led to many of the 
most beautiful results in theoretical physics. Yet mathematicians have to date been 
unable to make sense of the path integral in all but simplest cases. The infinities that 
arise in performing functional integrations, long since understood by physicists, are 
beyond the limits of rigorous analysis. Of course, that hasn't stopped physicists using 
the path integral to great effect3 and one of the most important tools that has been 
developed is a discretised version of quantum field theory which can be simulated on 
a computer. Usually called lattice field theory, the numerical evaluation of the path 
integral is performed using Monte Carlo techniques. 

However, there is one class of quantum field theories that physicists do not know 
how to simulate on a computer. This is the class that involves particles called “chiral 
fermions”. To fully describe what a chiral fermion is would, unfortunately, take too 
long4, but they are wonderfully subtle objects that owe their existence to several in-
tricate mathematical facts about the structure of space-time and the nature of forces 
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in quantum field theory. Most importantly for our story, all the particles in Nature, 
described by the Standard Model, are chiral fermions. (Although, peculiarly, only the 
weak nuclear force and the Higgs boson notice this fact.) 

It is not entirely clear what to make of our inability to simulate the Standard 
Model on a computer. Perhaps this is merely a difficult problem waiting to be solved 
with conventional techniques. But it smells deeper than that. The obstacles that lie 
behind attempts to discretise chiral fermions are related to aspects of geometry, 
topology, index theorems and a physics version of Hilbert’s Hotel known as the quan-
tum anomaly. All of these rely on the continuous nature of the field. It may well be 
that our failure is telling us something important: the laws of physics are not, at 
heart, discrete. We are not living inside a computer algorithm. Probably.

Footnotes

1: A heuristic and simple explanation of why fields, rather than particles, underlie the world 
can be found in the introductory section of the quantum field theory lecture notes available 
for download at http://www.damtp.cam.ac.uk/user/tong/qft.html.

2: It might appear that the integers arise in a meta-fashion in physics since it looks as if the 
number of species of particle must be an integer. After all, one might think that we can 
count them: there is an electron field, a neutrino field, six quark fields, and so on. But this 
is illusory. There are interactions. One type particle can morph into other types and the 
boundary between them becomes blurred. It is still an open mathematical problem to un-
derstand how to count the number of particle species in a given quantum field theory. This 
problem has been solved only in a certain special classes of quantum field theory known as 
conformal field theories where the number has the rather technical name of ‘central charge’. 
In general, it is not an integer.

3: Ironically, the path integral has also yielded some of the most interesting results in geome-
try in the past decades. Witten’s Fields medal winning work on knot invariants was derived 
from the path integral approach to quantum field theory, as are other  breakthrough ideas 
such as mirror symmetry and Seiberg-Witten invariants.

4: Here is a short description of a chiral fermion. All elementary particles carry a property 
called spin. For our purposes, it will suffice to think of the particles as tiny spinning balls. 
A “fermion” − named after the physicist Enrico Fermi − tells us that these particles carry 
1/2 unit of spin, the smallest amount any particle can carry. This already has strange con-
sequences. If you rotate the particle by 360°, it doesn’t come back in the same state. You 
need to rotate by 720° to achieve this. Now onto the word “chiral”. This is a property only 
of massless fermions. Massless particles are restless, they keep moving, always at the speed 
of light. The word “chiral” means that the spin of the particle always rotates in a fixed 
direction, either clockwise or anticlockwise, around the direction of motion. One of the 
great shocks of the Standard Model of particle physics is that all the particles that we know 
− the electron, the quarks, the neutrino − are massless. They want to travel at the speed 
of light. The reason that they do not is the Higgs field, a treacle-like substance spread 
throughout space through which all other particles have to plough their way.
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Sand Ripple Dynamics
Granular Flows and Washboard Roads

Peter Hatfield, Pembroke College

As a first year undergraduate, I spent comparatively little time at CMS – and no 
time at all in the laboratories! It was therefore a great pleasure to spend the summer 
after my first year working in DAMTP’s G.K. Bachelor Laboratory with the Granular 
Flows group, mainly with Dr Jim McElwaine (Fellow at St. Catherines) and Dr Na-
thalie Vriend (Post-doctoral researcher).

Granular flows are the subdivision of Fluid Dynamics that deals with the flow of 
particles that are sufficiently large that they are not subject to thermal motion fluc-
tuations and cannot be modelled with continuum mechanics. Interestingly the UK is 
unique in including fluid dynamics in mathematics departments – in Europe and the 
US the field is variously described as physics or engineering.

Granular flows (as I have learned!) can be very interesting, because they exhibit a 
wide variety of behaviours, from like a liquid to like a solid – and when these behav-
iours clash very complex behaviour can arise indeed. There are important impactions: 
some estimates suggest 10% of the worlds en-
ergy is used processing granular materials – 
think of sand, snow, grain, pills and cement.

A simple example to illustrate the complex 
behaviour that can arise is an experiment mix-
ing equal volumes of two types of sand of dif-
ferent particle size. One is coloured red, the 
other blue. The sand is initially uniformly 
mixed. When the container is spun below a 
certain frequency, the larger particles will 
separate out and go to the side, while the 
smaller particles will concentrate in the centre. 
Interestingly though, if it is spun at a higher 
frequency, the opposite happens; the coarser 
particles will congregate in the centre. How-
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ever, if the container is spun at exactly the threshold frequency, neither will happen – 
the symmetry of the system will break and the finer grains will go to the left and the 
coarse grains to the right (or vice versa).  Just one of the unusual macroscopic effects 
in granular dynamics that is not really understood at all, even though at a particle 
level it is completely understood – simply Newtonian dynamics.

A current area of research in the department is how sand flows down gulleys, for 
example in avalanches. Peter Saunders (3rd year Physics at Downing) worked over 
the summer in the same lab with me looking at static areas that can form as the sand 
initially moves down the slope, how the curvature of the flow can change with flow 
rate and a variety of other phenomena.

Faraday heaping, a phenomenon originally observed by the man himself back in 
1831, was only really properly sorted out in the last 5 years or so, a lot of work done 
by a group at the University of Twente, in the Netherlands. Essentially, when a flat 
bed of sand is shaken vertically, small heaps/hills will form almost immediately. 
Then, over long time periods, these heaps will join together to form one larger one. 
Crucially however, this does not happen when the grains are a vacuum, meaning the 
drag from the air in the cycle of an individual grains motion is key.

“Washboarding”, the effect by which the ripples you occasionally see in roads 
form, as well as moguls in sand etc. The same process is also at work in CD readers, 
where the reader passes over the CD continually and can cause deformations. Wash-
boarding can often lead to roads having to be repaved, and can be a serious problem 
in parts of the developing world. One of the first to study wide-scale motion of sand 
was a certain Brigadier Ralph Bagnold OBE FRS.  He was a Commander in north 
Africa during the Second World War, and also found time to write “The Physics of 
Blown Sand and Desert Dunes” (1941). Still an influential text, it was used by NASA 
recently to study the movement of dunes on Mars. The Bagnold Formula is named 
after him, relating wind speed and sand movement.

Segregation (which is what I mainly looked at over the summer) is the effect by 
which two different particle types will separate out when shaken together. This can 
be driven by both differences in particle size and particle density. There is an easy 
demonstration you can try in your kitchen to show a similar effect. Get a see-through 
jar or similar. Put a bolt or something of similar size and weight in, and also some-
thing of similar size, but much lighter like a peg. Mix it around a bit and then try 
shaking it vertically. You should find the bolt rises to the top, and the peg sinks to 
the bottom. Now put the jar on its side and shake horizontally. You should find the 
opposite happens! You have just demonstrated the “Brazil-Nut effect” where Brazil 
nuts rise to the top of mixed nuts.  The vertical effect is understood to an extent – 
the horizontal effect apparently remains a mystery…
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Overall I found granular flows to be an intriguing area of active research. A very 
interesting summer - I’m sure there remain many more things to be discovered in the 
field in the future that will both fascinate mathematicians and be of importance to 
physics and engineering.

Image by Jim McElwaine
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Factorimal Expansions
and the Irrationality Machine

Prof. Ian Stewart, University of Warwick

Introduction

One of the most prominent special numbers in mathematics is e. Joseph Fourier [3] 
proved that e is irrational, and Charles Hermite proved it is transcendental; that is, it 
satisifes no nontrivial polynomial equation over the rationals.

Here we reinterpret the irrationality of e using some simple ideas from dynamical 
systems and a special type of multibase expansion. It is well known that standard 
decimal notation can be modified to use any integer greater than 1 as a base, not just 
10. In multibase systems the base can change according to the digit concerned. For 
example, measurement in pounds and ounces employs base 16 for ounces but base 10 
for pounds, and the old pounds-shillings-pence system for British money used base 10 
for pounds, 20 for shillings, and 12 for pence.

The irrationality proof uses successive bases 2, 3, 4, 5, … to the right of the ana-
logue of the decimal point. Since this notation creates factorials in the algebra, we 
call it the ‘factorimal’ expansion.

The Factorimal System

A factorimal is an expansion of the form

 x =

∞∑
n=2

θn
n!

 (2.1)

where θn ∈  and 0 ≤ θn < n . Any such series converges absolutely.

Inductively, it is easy to prove that the finite series x = ∑k
n=2

θn
n!

 are precisely the 
rational numbers of the form m

k!
 where 0 ≤ m < k !. This means that factorimals are 

not plagued by infinite recurring expansions for rationals, like 0.33333… for 1/3 in 
base 10.  More precisely:
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Theorem 2.1:  Every terminating expansion represents a rational number in 
[0,1), and every rational number in [0,1) has a terminating expansion.

Proof: The first statement is obvious. For the second, consider a rational 0 ≤ p/q < 
1. We can write p/q = r/s ! where r is not divisible by s (take the smallest possible 
such s). We prove inductively on s that r/s ! has an expansion stopping at θs/s !.

When s = 2 the possibilities are 0/2, 1/2 and the result is obvious.

When s > 2, use the division algorithm to write r = qs + t where 0 ≤ t < s . Then

 p

q
=

r

s!
=

qs+ t

s!
=

q

(s− 1)!
+

t

s!

By induction, 

 

q

(s− 1)!
=

s−1∑
n=2

θn
n!

If we set θs = t then

 p

q
=

s∑
n=2

θn
n!

 

Since these numbers are dense in [0,1) the following theorem is no surprise:

Theorem 2.2:  Every x ∈ [0,1) has a factorimal expansion, which may be infinite.

Proof:  Given x , define the θn inductively by

 θ2 = �2x� (2.2)

 θk = max

{
θ :

k−1∑
n=2

θn
n!

+
θ

k!
≤ x

}
 (2.3)

or equivalently

θk =

⌊
k!(x−

k−1∑
n=2

θn
n!

)

⌋
 (2.4)

We claim that

(a)  0 ≤ θk < k
(b)  

∣∣∣x−∑k
n=2

θn
n!

∣∣∣ < 1
k!

If θk ≥ k then we can increase θk−1 by 1 since

 θk−1

(k − 1)!
+

θk
k!

=
θk−1 + 1

(k − 1)!
+

θk − k

k!

which contradicts 2.2. This proves (a).
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If 
∣∣∣x−∑k

n=2
θn
n!

∣∣∣ ≥ 1
k!  then we can increase θk to θk + 1 and still have

 

k−1∑
n=2

θn
n!

+
θk + 1

k!
≤ x

contrary to 2.2 This proves (b).  

Corollary 2.3:  With the above definition of the θk, the sum ∑k
n=2

θn
n!

 converges 
to x as k → ∞.

For brevity write

 
[θ2, θ3, . . .] =

∞∑
n=2

θn
n!

The expansion is not unique, but we can characterise the lack of uniqueness. First, 
observe:

Lemma 2.4:  We have

 

∞∑
n=k

n

(n+ 1)!
=

1

k!

Proof: The sum is telescoping:

 

=
k

(k + 1)!
+

k + 1

(k + 2)!
+

k + 2

(k + 3)!
+ · · ·

=
k + 1

(k + 1)!
− 1

(k + 1)!
+

k + 2

(k + 2)!
− 1

(k + 2)!
+

k + 3

(k + 3)!
− 1

(k + 3)!
+ · · ·

=

[
1

k!
+

1

(k + 1)!
+

1

(k + 2)!
+ · · ·

]
−

[
1

(k + 1)!
+

1

(k + 2)!
+

1

(k + 3)!
+ · · ·

]

=
1

k!  

Proposition 2.5:  Suppose that for some k ≥ 2 we have θk−1 < k − 1, but         
θ  =  − 1 for all  ≥ k . Then

 [θ2, θ3, . . . , θk−1, θk, θk+1, . . .] = [θ2, θ3, . . . , θk−1 + 1, 0, 0, . . .]

Proof:  With the stated conditions, Lemma 2.4 implies that

 
θk−1 + 1

(k − 1)!
=

θk
k!

+
θk+1

(k + 1)!
+ · · · 

It follows that every terminating factorimal has an alternative non-terminating 
expansion. We claim this is the only case where a factorimal expansion is not unique.
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Theorem 2.6:  Suppose that

 
∞∑

n=2

θn
n!

=
∞∑

n=2

φ

n!
 (2.5)

where θn, φn ∈  and 0 ≤ θn, φn < n . Then either θn = φn for all n ≥ 2, or there ex-
ists k ≥ 2 such that 

θn = φn for all n with 2 ≤ n ≤ k ,
φk = θk + 1,
θn = n − 1 for all n > k ,
φn =0 for all n > k ,

or the same conditions hold with all θn and φn interchanged.

Proof:  Suppose that (2.5) holds with the stated conditions. If θn ≠ φn for some n, 
let k be the smallest integer for which θk ≠ φk. Interchanging all θn and φn if neces-
sary, we may assume that θk < φk. Then

 

∞∑
n=k

θn
n!

=
∞∑

n=k

φ

n!
 (2.6)

and θk ≤ φk − 1. The left hand side of (2.6) is less than or equal to

 

φk − 1

k!
+

∞∑
n=k+1

n− 1

n!
=

φk − 1

k!
+

1

k!
=

φk

k!

with equality if and only if θn = n − 1 for all n > k . Here we have used Lemma 2.4.
The right hand side of (2.6) is greater than or equal to φk

k!
. Therefore θn = n − 1 for 

all n > k and φn = 0 for all n > k .  

Corollary 2.7:  Every rational in [0,1) has a unique terminating factorimal    
expansion.

The Irrationality Machine

Now we turn factorimals into dynamics. Suppose that A is an attractor of a dy-
namical system. Then the basin of attraction β(A) of A is the set of all points x(0) 
such that x(t) → A as t → +∞. Informally, this comprises all points whose trajecto-
ries approach indefinitely close to A in forward time.

The basins of attraction of the system’s various attractors partition the phase 
space into disjoint regions, with the exception of points that lie on basin boundaries. 
It turns out that the geometry of the basins can be topologically wild. The long-term 
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behaviour of points on (and in practice near) the basin boundaries then becomes 
unpredictable: it is not feasible to decide which attractor the point’s trajectory ap-
proaches. So we may be able to say that the long term behaviour can be one among 
several possibilities, while being unable to say which.

Systems with bizarre behaviour need not have complex equations. Consider, for 
example, the time-dependent discrete dynamical system

xt+1 = (t+1)xt   (mod 1)

whose phase space is the circle S 1 = / . We call this the irrationality machine, for 
reasons we now explain.

Geometrically, the dynamic wraps the circle round itself increasingly many times, 
so this system is unlikely to occur in any realistic physical model. But its mathemati-
cal structure has some interest.

The dynamic is a non-invertible map, so the system is a semi-dynamical system, 
defined only for t ≥ 0. Distinct initial points can have orbits that become identical 
after some finite time, rather than merely converging. For example, x0 = 0 and       
x0 = 1/2 both lead to x1 = 0. There is an explicit solution: clearly

xt = (t !)x0

Therefore all rationals tend to 0, indeed, reach 0 after finitely many iterations. If     
x 0 = p/q with p,q ∈  and q ≠ 0, then xq = (q !)p/q, which is an integer, hence equal 
to 0 (mod 1). Conversely, if xt = 0 then (t !)x0 ∈  so x 0 is rational.

Since the effect of the factor t + 1 is not time-periodic, we do not expect to find 
periodic points. In fact, if xs = xt for distinct s,t then (s !)x0 = (t !)x0 so (s ! − t !)x 0 = 0 
modulo 1, implying that x 0 is rational. Therefore 0 is the unique periodic point.

Some irrational numbers have orbits that converge to 0 without actually reaching 
it. An example is e, whose fractional part is e − 2. Consider the power series

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·

and take x0 = e. Then xt = (t !)e, which is of the form

(t!)e = (t!)(1 + +
1

1!
+

1

2!
+ · · ·+ 1

t!
) + (

1

t+ 1
+

1

(t+ 1)(t+ 2)
+ · · · )

= n+ (
1

t+ 1
+

1

(t+ 1)(t+ 2)
+ · · · ) (n ∈ Z)

=
1

t+ 1
+

1

(t+ 1)(t+ 2)
+ · · · (mod 1)
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The series has bounds
1

t+ 1
≤ 1

t+ 1
+

1

(t+ 1)(t+ 2)
+ · · · ≤ 1

t+ 1
+

1

(t+ 1)2
+ · · · = 1

t

Therefore xt ∉  for any t , but xt → 0 as t → ∞.

As a corollary, we have proved that e is irrational. In fact, the calculation is a 
thinly disguised version of the standard proof of this property, see for example Hardy 
[2] Example XCI.6, page 343.

The number e is not alone in possessing this property. Another easy example is   
e−1. The proof uses the identity

1/e = 1− 1

1!
+

2

2!
− 3

3!
+

4

4!
− 5

5!
+ · · · = 2

3!
+

4

5!
+ · · ·

The same method applies more widely.

Of course more is known: eq is irrational for all nonzero rational q, see [1].
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Trisecting the Angle

Philipp Kleppmann, Corpus Christi College

The first ruler and compass constructions date back to the time of the ancient 
Greeks. They set the rules and many discoveries were made by Euclid and Archime-
des. However, there are problems they couldn't solve. The two most famous of these 
are the trisection of an angle (i.e. dividing an arbitrary angle into three equal parts) 
and squaring the circle (constructing a square with area equal to the area of a given 
circle) using only a ruler and a compass. These problems remained unsolved for 2000 
years until it was proved in the 19th century that the constructions are impossible [1].

In this article I will present a proof of the impossibility of trisecting an arbitrary 
angle. This was first proved in 1837 by Pierre Wantzel [1]. The proof is based on Car-
tesian coordinates – our “usual” coordinate system which was not known to the an-
cient Greeks.

Lots of definitions

To start the proof, the rules have to be specified formally. Let X be a finite set of 
points in 2. Then the following two operations are allowed:

 (i) draw a line through two distinct points of X;
 (ii) draw a circle passing through a ∈ X with centre b ∈ X.

Note that we are not allowed to use any markings on the ruler. It is therefore some-
times also called a straightedge.

We shall say that a point P in 2 is obtainable by ruler and compass in one step 
from the set X if P is a point of intersection of:

 – two distinct lines obtained using operation (i);
 – two distinct circles obtained using operation (ii);
 – one such line and one such circle. 

A point P is constructible if there is a finite sequence of points P1, P2,…, Pn = P 
such that P1 is obtainable by ruler and compass in one step from X0 = {(0,0), (1,0)}, 
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and such that Pi+1 is obtainable by ruler and compass in one step from the set               
Xi = {(0,0), (1,0), P1,…, Pi} for i = 1,…, n – 1.

A number x  is called a constructible number if (x ,0) is a constructible point.

Which points can't be constructed?

Let F be a subfield of  (i.e. a set of real numbers that is closed with respect to 
addition, subtraction, multiplication, and division just like  or . For example,    
a,b ∈ F ⇒ a + b ∈ F) and define F (

√
x) := {a+ b

√
x : a, b ∈ F} . This is called a 

quadratic extension of F and is itself a subfield of .

Let S be the set of all real numbers that can be obtained from the integers using 
only the four basic arithmetic operations +, −, ×, / and square roots. So for exam-
ple, 

√
1
2 − 3√

4+
√√

7

 is in S.

In order to prove that all constructible numbers are in S, we need a few lemmas 
(taken from [2]).

Lemma 1.  If a line passes through two points each having coordinates in field F, 
then the line has an equation with coefficients in F. If both the centre of a circle and 
a point on the circle have coordinates in field F, then the circle has an equation with 
coefficients in F.

Proof.  We can derive lemma 1 just by writing out the equation of                        
the line and circle: The equation of a line through (x 1,y 1) and (x 2,y 2) is                                                
(y 2 – y 1)X – (x 2 – x 1)Y + (x 2y 1 – x 1 y 2) = 0 and the equation of a circle with centre 
(p,q) that passes through (s,t) is (X – p)2 + (Y – q)2 = (s – p)2 + (t – q)2 which is 
equivalent to X 2 + Y 2 + (–2p)X + (–2q)Y + (s (2p – s) + t (2q – t )) = 0. Now use 
the fact that fields are closed under the four basic arithmetic operations. 

Lemma 2.  If each of two intersecting lines has an equation with coefficients in field 
F, then the point of intersection has coordinates in F. 

Lemma 3.  If a line and a circle intersect and each has an equation with coefficients 
in field F, then the points of intersection have coordinates in F or in a quadratic ex-
tension of F.

Proof.  The line with equation aX + bY + c = 0 and the circle with equation       
X 2 + Y 2 + fX + gY + h = 0 intersect at the points (x 0,y 0) where

d = (fb− ag)2 + 4c(af + gb− c)− 4h(a2 + b2)
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x0 =
abg − 2ac− b2f ± b

√
d

2(a2 + b2)
, y0 =

abf − 2bc− a2g ∓ a
√
d

2(a2 + b2)
.

We suppose a,b,c,f,g,h are in F. In order for the line and circle to intersect, d must be 
nonnegative. 

Lemma 4.  If each of two intersecting circles has an equation with coefficients in 
field F, then the points of intersection have coordinates in F or in a quadratic exten-
sion of F. 

I didn't write down the proofs for lemmas 2 and 4 because they are similar to the 
proof of lemma 3, and they are similarly uninspiring.

A point in 2 is constructible if and only if both coordinates are constructible 
numbers, so starting with F =  it follows from these lemmas that all constructible 
numbers are in the set S defined above. This is useful, because if we find a number 
that is not in S, then we know that it can't be constructible. In fact, all numbers in S 
are constructible, but that isn't important here.

The proof

Now we get to the actual problem of trisecting an angle. We want to prove that 
there is no general method using only ruler and compass with which every angle can 
be trisected. In order to show this it suffices to find a particular angle that can't be 
trisected. First of all, we need another short lemma.

Lemma 5.  The angle x is constructible if and only if cos(x) is a constructible 
number.

Proof.  See Figure 1 below. 

Figure 1:  The circle trough B and C has centre A.
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Now all that remains to be done is to show that 
cos(π9 ) /∈ S . If we succeed in proving this, then we 
have found an angle θ = π

3  that can be constructed 
(see figure 2), but θ3  is an angle that can't be con-
structed by Lemma 5. This proves the hypothesis.

Recall the trigonometric formulae
sin(a+ b) = sin(a) cos(b) + cos(a) sin(b),

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).

Combining these, we get

cos (3a) = cos (2a) cos (a)− sin (2a) sin (a) = 4 cos3(a)− 3 cos (a).

So substituting a = π
9  and x = cos(a) this becomes 12 = 4x3 − 3x  which is equivalent 

to 8x 3 – 6x – 1 = 0.

It is intuitively clear that the zeros of this cubic polynomial are not in S because 
they should involve cube roots. In fact, x ∈ S ⇒ x satisfies a minimal polynomial 
with rational coefficients whose degree is a power of 2. However, the proof of this 
requires knowledge from Galois theory, so I will not give it here (see [2] and [3]). In 
any case, it follows that cos(π9 ) /∈ S, which completes the proof! 

So I will never be able to trisect angles?

In the course of history different sets of rules have been tried out, and some of 
them do allow angles to be trisected. For example, if we work with a marked ruler 
instead of the unmarked straightedge, then it is possible. Archimedes gave such a 
construction which uses a ruler that has only two marks on it.

Likewise, if we allow ourselves to construct with straightedge and compass shapes 
that can be moved around on the plane, then there are constructed “tools” that make 
angle trisection possible. See [4] for more information. Finally, it is possible to trisect 
acute angles using origami (i.e. folding paper). See [5] for instructions.

References and Further Reading
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[5] http://www.math.lsu.edu/\~verrill/origami/trisect/.
[6] Kazarinoff, N. D., Ruler and the Round: or Angle Trisection and Circle Division,
 Prindle, Weber & Schmidt, Inc., Boston, 1970.
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Dissecting Parallelotopes

Anja Komatar, Queens’ College

Two bodies are said to be scissor-congruent if one can be cut into finitely many 
pieces, that can be rearranged to form the other. By the Bolyai-Gerwien theorem any 
two polygons of the same area are scissor-congruent. Hilbert’s third problem is re-
lated to its 3D analogue — it asks whether or not two polyhedra of same volume are 
scissor congruent. By considering Dehn’s invariant one can show that a cube and a 
tetrahedron are not, so the question about scissor congruency of polytopes becomes 
interesting.

Let v1,v2,…,vn be n -dimensional vectors and V = (v1 v2  vn) an n × n matrix. 
If det V ≠ 0, then P = { 

∑n
i=1 μivi, μi ∈ [0,1]} is an n-parallelotope described by 

vectors vi. It’s volume is |det V|. This article shows that any parallelotopes of the 
same volume are scissor congruent.

This can be shown by using elementary geometry. To start with, define n by n 
matrices E(λ,r,s)ij = δij + λδir δjs and F(ν,r,s)ij = δij + (ν − 1)δir δjr + (1ν  − 1)δis δjs 
with r ≠ s and ν > 0. Observe that |det E | = |det F | = 1. 

Define also an (n − 1)-dimensional hyperplane by

H(λ, r, s, k) = {∑i �=r,s μivi + μs(vs + λvr) + kvr, μi ∈ R}. 

Lemma 1: Parallelotopes P and EP, described by vectors in V and E(λ,r,s)V 
respectively, are scissor congruent.
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Proof:  Given λ, r and s, consider all k such that H(λ,r,s,k) ∪ V ≠ ∅. Cut V 
along all such H(λ,r,s,k) to get pieces of V, k th piece lying between H(λ,r,s,k) and 
H(λ,r,s,k + 1). Clearly there are  |�λ�| + 1  such k ’s, as P meets H(λ,r,s,0) in 0 and 
H(λ,r,s,−λ) in point v, but none of H(λ,r,s,k) with |k | >|λ| + 1. Now translate kth 
piece by vector −kvr. Then it lies between H(λ,r,s,0) and H(λ,r,s,1). The pieces form 
a parallelotope P′ = EP. Indeed, for all j ≠ r, both V and E(λ,r,s)V lie between 
H(0,j,r,0) and H(0,j,r,0), whereas V lies between H(0,r,s,0) and H(0,r,s,1) and      
E(λ,r,s)V lies between H(λ,r,s,0) and H(λ,r,s,1). Thus for any x ∈ V, x is in the kth 
piece and gets translated to x ′ ∈ E(λ,r,s) V, so P′ ⊂ EP. But by cutting P in 
finitely many pieces and rearranging them to form P′ we have not changed it’s vol-
ume, which is equal to the volume of EP. Thus P′ = EP, so P and EP are scissor 
congruent.                          

Lemma 2:  Parallelotopes P and FP, described by vectors in V and F(ν,r,s)V 
respectively, are scissor congruent.

Proof:  The lemma is obvious for  vi || Fvi  ∀ i. Otherwise, there exists z ∈ Z such  
that 2z−1 <  ν  ≤ 2z. Relabel P = P(0). If z > 0, form P(k) by cutting P(k−1) along 
H(0,s,r,0.5) and translating the piece of P, that does not contain 0 by 
v(k−1)

r − 0.5v(k−1)
s , until getting P(z). If z < 0 proceed similarly, but exchanging r and 

s, to get P(−z). In each step we get v(k)
r = 2sign(z)v(k−1)

r  and v(k)
s = 2−sign(z)v(k−1)

s . 
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So in each case we get P(|z |) = F(2z,r,s)P, so P and F(2z,r,s)P are scissor congruent.

Now we want to show that P(|z |) and F(ν,r,s)P= F(ν ′,r,s)P(|z|), where 0.5 < ν ′ ≤ 1, 
are scissor congruent. If ν ′ = 1 that is obvious. Else cut P(|z|) along H(−ν ′,r,s,ν ′), to 
get piece 1, containing 0. Cut the other piece along H(0,r,s,1 − ν ′) to get piece 2 on 
the same side of H(0,r,s, 1 − ν ′) as 0 and piece 3 on the other. Then translate piece 2 
by (2 − 1

ν′ )(ν′vr − vs)  and piece 3 by ( 1
ν′ − 1)(vs − ν′vr) . We get F(ν ′,r,s) P(|z|), 

which is clearly scissor congruent with P(|z|). Thus also P and FP are scissor congru-
ent as required. 
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Theorem: Any two n-parallelotopes of same volume are scissor congruent.

Proof: That is to say, if P and R are n-parallelotopes described by vectors vi and 
wi respectively, and |det V|=|det W|, then we can cut P in finitely many pieces and 
rearrange them to form R. This will be shown in two steps. At first P will be cut and 
its pieces rearranged to form P’, described by vectors v’i, such that v’i ||wi for all i. 
Then P’ will be cut to pieces that can form R.

Since vi and wi are linearly independent (else |det V|=0 or |det W|=0), they form 
two sets of basis of n. Then λi in w1 =

∑n
i=1 λivi  are uniquely defined and not all 

zero. Switch the labels of vj and v1 for the smallest j such that λj ≠0, so that now                    
.w1 = λ1v1 +

∑n
i=2 λivi , λ1 ≠ 0. Apply Lemma 1 with E(λj

λ1
, j, 1)  for all j > 1 . Ap-

plying Lemma 1 does not affect any vi with i ≠ 1, but shows how to dissect P to a 
parallelotope, described by vector

v′
1 = v1 +

n∑
j=2

λj

λ1
vj =

1
λ1

(w1 −
n∑

j=2

λjvj) +
n∑

j=2

λj

λ1
vj =

1
λ1

w1

so P(1) is described by vectors v′1 and vi for i >1, with v′1 ||w1. Proceed similarly to 
construct v′j for 1< j ≤ n. Note that having constructed v′i for i < j, v′i together 
with vi for i ≥ j form a basis of n, and since wi are linearly independent, 
wj =

∑j−1
i=1 λiv′

i +
∑n

i=j λivi  with at least one of λi for i ≥ j nonzero, so we can 
switch labels of that vi and vj. Thus we have cut P and rearranged its pieces to con-
struct P(n) = P′, with vectors describing it parallel to those of R.

Now we have wi= ν ′v′i  for all i. Translate P′ by −∑
k v′

k  for all k with ν ′k < 0 to 
get P′(1), described by vectors v′(0) = sgn(ν ′i) v′i  with wi = νiv

(0)
i  and νi >0. Having 

constructed P′(k-1), construct P′(k) by applying Lemma 2 with F(νk, k, k + 1) for 1≤ k < 
n. In each step P′(k) is described by vectors v′(k)

k = νkv′(k−1)
k = wk , v′(k)

k+1 = 1
νk

v′(k−1)
k+1

                        
and v′(k)

i = v′(k−1)
i  for i ≠ k, k + 1. Since volume is preserved in each step, we must 

have v′(n−1)
n = wn  and P′(n−1)=R. 

References

[1] http://en.wikipedia.org/wiki/Hilbert's_third_problem.
[2] S.J. Cowley: Vectors and Matrices lecture notes (Michaelmas 2009).
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Morley’s Theorem

Elton Yechao Zhu, Queens’ College

The past three hundred years have seen the birth of different non-Euclidean geo-
metries, such as elliptic and hyperbolic geometry, and the introduction of mathemati-
cal rigour into Euclidean geometry, such as the proof of Euclid’s Fifth Postulate, the 
“Parallel Postulate”, from his first four postulates.

However, in 1899, Frank Morley (8th Wrangler, 
BA in Mathematics, 1884, King’s College, Cam-
bridge), then professor of mathematics at Haver-
ford College, US, discovered a surprising result in 
plane geometry, the so-called Morley’s Miracle. 
The fact that it has never been discovered before 
is mysterious. It states that

The three points of intersection of the adjacent trisectors of
the angles of any triangle form an equilateral triangle.

Morley’s original proof revolved around algebraic curves. Subsequently, many at-
tempts were made to find elementary proofs which would match the level of knowl-
edge sufficient to understand the theorem itself. A number of such proofs have been 
found, most of which involve trigonometric identities or backward methods. Interest-
ingly, two famous Cambridge mathematicians, Béla Bollobás and John Conway, have 
their own proofs to the theorem. Alan Connes, a French mathematician (Fields Me-
dallist, 1982), also holds an innovative proof of it. If you have not come across this 
theorem before, probably you can give it a try yourself!

It is interesting to note that Morley’s Theorem does not hold in spherical and hy-
perbolic geometry and that the angle trisectors of exterior and interior angles give a 
total of five equilateral triangles.

Although the theorem is more than one hundred years old, new proofs are still 
coming out recently. Here I will present two proofs, one using trigonometric identity 
and the other using backward method.
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First Proof

Note the trigonometric identity sin 3θ = 4 sin θ sin (60° + θ) sin (120° + θ). 
Points D, E and F are constructed on BC as shown. Let A = 3a, B = 3b and    

C = 3c. Clearly AYC = 120° + b. Apply the Sine Rule on AYC,

AC

sin(120◦ + b)
=

AY

sin c
.

The height of ABC with base BC is

h = AB sin 3b =
4AB ×AC ×DX

XE ×AY
sin b sin c

   = AC sin 3c =
4AC ×AB ×DX

XF ×AZ
sin c sin b .

Since the numerators are equal,

XE×AY = XF×AZ.

But ZAY = EXF = a, so ZAY and EXF
are similar.

AZY = 60° + b,
AYZ = 60° + c.

All other angles in the diagram can be deter-
mined similarly, hence proofing the theorem.    

Conway’s proof

Let the triangle have angles 3a, 3b, 3c and let x ′ mean x + 60°. Then the triangles 
with angles (0′,0′,0′), (a,b ′,c ′), (a ′,b,c ′), (a ′,b ′,c), (a ′′,b,c), (a,b ′′,c) and (a,b,c ′′) exist 
abstractly, as the sum of angles is 180° in each case. Build them in such a way:

(0′,0′,0′): This is equilateral. Make it have edge of length 1.
(a,b ′,c ′): Make the edge joining the angles b ′ and c ′ have length 1. 
 Similarly for (a ′,b,c ′) and (a ′,b ′,c).
(a ′′,b,c): Shown as shaded triangle below. Let the angles at B, P, C be b, a ′′, c. 

Draw lines from P cutting BC at Y and Z such that PZ = 1 and   
PYC = PZB = a ′. Similarly for (a,b ′′,c) and (a,b,c ′′).

Now we can fit all these 7 triangles together to form the figure on the following 
page. Corresponding points to Y, Z for the other two triangles are omitted. In which 
case RBP = b, RPB = c ′, PRB = a ′.
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It can be easily checked that at each internal vertex, 
the angles add up to 360°. Also, BPZ is of the form (a
′,b,c ′) and the edge joining b ′ and c ′ has length 1. So it 
is congruent to the triangle (a ′,b,c ′) drawn above. 
Hence, the edge joining b and c ′ have the same length 
for the two triangles. Hence, adjacent edges fit either 
because of this argument or both have length 1 as 
declared.

This figure (ignoring PY and PZ) is similar to 
original triangle given. Hence, the middle sub-
triangle must also be equilateral. 

References

[1] Morley’s Trisector Theorem on Wikipedia:
 http://en.wikipedia.org/wiki/Morley's_trisector_theorem.
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A brief Note on Doubles Tournaments

A.R.D. Mathias, University of Cambridge

The purpose of this note is to describe a short solution of the Doubles Tournament 
problem and the Spouse-Avoiding Doubles Tournament problem for 4k and 2k players  
respectively, when k is a power of 2. Similar tournaments are known for almost all val-
ues of k — see [1] and [2].

The Doubles Tournament Problem:  Given 4k players, to arrange a tournament 
of (4k − 1) rounds, each of k double matches, so that any two players play with each 
other exactly once and against each other exactly twice.

Rule 1:  Let F be a finite field of order 4k. We index the players by the members of F 
and the rounds by the set F ′ of non-zero elements of F. Pick ξ ∈ F, with ξ ≠ 0 or 1. In 
round ψ, player θ will play with player θ + ψξ against players θ + ψ and θ + ψ + ψξ.

Proof:  To see that Rule 1 is coherent, note that the sets {θ , θ + ψξ} are the cosets 
of the additive subgroup {0, ψξ}, itself a subgroup of {0, ψ, ψξ, ψ + ψξ}; of which 
larger subgroup the matches {θ, θ + ψ, θ + ψξ, θ + ψ + ψξ} are the cosets.

The Spouse-Avoiding Doubles Tournament Problem:  Given 2k married cou-
ples (k > 1), to arrange a tournament of (2k − 1) rounds, each of k mixed doubles, so 
that no couple ever play in the same game, but such that each person plays against 
each other person, spouse excepted, exactly once and plays with each person of the 
other sex, spouse excepted, exactly once.

Rule 2:  Let G be a finite field of 2k elements; index the couples by the members of G 
and the rounds by the set G ′ of non-zero elements of G. Pick ξ ∈ G\{0,1} as before, 
and call the members of couple θ Man θ and Woman θ. In round ψ, Man θ and 
Woman θ + ψξ play Man θ + ψ and Woman θ + ψ + ψξ.

The coherency and adequacy of this rule may be verified as above.

[1] P. Healey, Construction of Balanced Double Schedules,
 Journal of Combinatorial Theory Series A 29, 280-286, 1980.
[2] W. D. Wallis, Spouse-avoiding Mixed Double Tournaments,
 Annals of the New York Academy of Sciences, 549-554, 1979.
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Music, Groups and Topology

Philipp Legner, St John’s College

It is well known that many aspects of music can be explained using mathematics:  
music is created and propagates using sound waves with trigonometric functions, in-
tervals are defined by ratios of frequencies, the idea of rhythm is based on multiples 
of certain time intervals and music is stored digitally on CDs.

In this article I want to examine the relationship between mathematics and music 
from the opposite point of view: We will see that there is music “hidden” in pure 
mathematics and that you can hear concepts such as group actions − in the same 
way as it is possible to see the symmetries of polygons in art.

Notes, Chords and Transformations

Pythagoras was the first to discover that two notes with a simple frequency ratio 
(such as 2/3) sound consonant, while those with a more complicated frequency ra-
tio (such as 17/24) sound dissonant. Two notes with a frequency ratio of 1/2 sound 
so similar that we can use them to divide the continuous scale of pitches into 
equivalence classes, which are called octaves.

In equal tempered tuning, each octave is divided into 12 equally spaced notes, 
with a ratio of 21/12 between two consecutive notes. This is of course far from being 
a simple fraction, but a very close approximation.
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In the following article it will be useful to replace these 12 notes by the group of 
integers mod 12, written as /12 (since we don’t distinguish between, for example, 
C  and D ). The style of music in which the composer explores the full chromatic 
scale (rather than just one major or minor key with 7 non-equally spaced notes) is 
called 12-tone music. It was developed during the time from R. WAGNER (1813–
1883) to A. SCHÖNBERG (1874–1951).
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We can also combine several notes to form chords. In particular 
we can consider the set S of all consonant triads which consists of

 – major triads of the form {x, x + 3, x + 7};
 – minor triads of the form {x, x + 4, x + 7}.

Since /12 is cyclic, we don’t have to specify order of the three notes. However if 
the triad is of the form above (in root position) we write 〈a,b,c〉 and call notes root, 
third and fifth respectively. It is easy to see that S has size 24.

The group of symmetries of /12 is the dihedral group of order 24, D24. In music 
it is often called the T/I group because it consists of

 – Transpositions: Tn :  x  x + n   mod 12 n ∈ {0, ,12}
 – Inversions: In :  x  −x + n   mod 12

Transposition and inversion can be found in many places in music, most notably 
the Art of Fugue by J. S. BACH. Inverting always swaps major and minor keys while 
transposing only changes the pitch. The T/I group acts both on the set of notes  
/12 and the set of triads S. Clearly both those actions are transitive.

Geometrically we can identify the set of 
notes by a regular 12-gon and the triads by 
certain triangles connecting three of its vertices. 
Now the T/I group acts on the set of vertices 
and triangles by rotation and reflection. In fig-
ure 1 you can see the C-major triangle and its 
image under I0 and T2.

The PLR Group, the Tone Net and the Harmonic Torus

Although the T/I group is useful for analysing baroque and classical music, it 
doesn’t give much insight into 19th and 20th century chromatic music. Therefore 
we also define the PLR-group or neo-Riemannian group, named after the music 
theorist HUGO RIEMANN (1894−1919). The PLR-group is generated by three func-
tions P, L and R which we can define both musically and mathematically:

– Parallel: The operation P maps a major triad to its parallel minor and vice 
versa. Using the inversion operation defined above, P〈x,y,z〉 = Ix+z〈x,y,z〉.

– Leading tone exchange: The operation L lowers the root note of a major 
triad by a semitone and raises the fifth of a minor triad by a semitone.  
Thus L〈x,y,z〉 = Iy+z〈x,y,z〉.
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– Relative: The operation R maps a major triad to its relative minor and vice 
versa, i.e. R〈x,y,z〉 = Ix+y〈x,y,z〉.

All three operations take major chords to minor chords (and vice versa). They are 
musically interesting because they change precisely one of the three notes in a triad 
by a semitone. Therefore they enable parsimonious voice leading: the law of minimal 
motion of the moving voice. The following examples might help to visualise the 
actions of P, L and R:

 

&
Parallel Leading tone change Relative

œœœ œœœb œœœb œœœn œœœ œœœ œœœb œœœbb œœœ œœœ œœœb œœœb
 P(0,4,7) = (0,3,7) L(0,4,7) = (4,7,11) R(0,4,7) = (9,0,4)
 P(0,3,7) = (0,4,7) L(0,3,7) = (8,0,3) R(0,3,7) = (7,3,10)

By applying the definitions in terms of inversions above it is not hard to check that 
the PLR-group is also dihedral of order 24 and in fact is generated by the trans-
formations L and R only. As with the T/I group, the PLR-group acts simply tran-
sitively on the set of consonant triads S.

We can also find a geometrical representation of the PLR-group: the tone net. 
(figure 2). Each vertex represents a note and each triangle represents a major (△) 
or a minor (▽) triad. P, L and R each move to one of the three adjacent triangles.
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The note-net also shows other harmonic relationships between chords, such as 
dominant (R L) and subdominant (L R). Furthermore the keys on any horizontal 
axis sweep out the cycle of fifths.
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Clearly the tone net can be extended in all directions. However it is more useful 
to connect opposite boundaries to form a harmonic torus (see figure 3 below).

    
Figure 3                                                       Figure 4

All harmonic progressions trace out a path on this torus. The most famous exam-
ple probably is the following amazing extract from the second movement of L. VAN 
BEETHOVEN’s 9th symphony which follows the path is shown in figure 4:
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œœœ œb
œœœbb ‰ œœœbb J

œœœ

œbœ
œœbbb
‰ œœœbb J

œœœ œœœœœ ‰ œœœbJ
œœœ œœœœœ ‰ œœœ#n J

œœœ œœœœœ ‰ œœœ#J
œœœ œ

œœœ#
‰ œœJ

œœ œ
œ ‰ œœJ

œœ

Nearly all major and minor chords appear in this sequence. Mathematics gives us 
completely new (and very beautiful) ways of hearing the extract − which Beethoven 
wrote around 1822, 80 years before POINCARÉ initiated the subject of topology.

There are other similar examples, for example Bach’s Crab Canon (from The mu-
sical offering) looks like a Möbius Strip.
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The Duality of the T/I group and the PLR group

On the previous pages I have defined the T/I group and the PLR group. For each 
group there is a geometrical representations and there are examples of how they are 
used in music. They are both subgroups of Sym(S ), where S is the set of all conso-
nant triads, which are isomorphic to D24. However there is a very unexpected, much 
deeper relationship between these two groups, which is summarised in the following 
theorem (quoted from [3]):

Theorem:  The T/I group and the PLR group are dual. That is, each acts simply 
transitively on the set S of consonant triads, and each is the centraliser of the other 
in the symmetric group Sym(S ).

Proof:  The theorem, although surprising, is in fact not so unexpected when 
thinking about Cayley’s Theorem. It states that any group G is isomorphic to a sub-
group of Sym(G ). We can prove Cayley’s theorem by considering the action of G on 
itself, either by left or by right multiplication. For g,h ∈ G  we define

 pg : G → G   with   pg(x) = gx pg is a permutation of G ;
 qh : G → G   with   qh(x) = xh qh is a permutation of G.

By Cayley’s theorem, both P = {pg : g ∈ G} and Q = {qh : h ∈ G} under composition 
of functions are isomorphic to G. Also pg and qh commute for any g,h ∈ G  since

pg(qh(x)) = pg(xh) = gxh = qh(gx) = qh(pg(x)).

By considering the individual elements and how they act, it is not hard to show that 
we can identify the T/I group by P and the PLR group by Q. Since the elements in P 
and Q commute, we have P ⊆ CQ and Q ⊆ CP, where CX is the centraliser of X in 
Sym(G ). Therefore in fact P = CQ and Q = CP, i.e. the T/I group and the PLR 
group are dual. 

The fact that elements of the T/I and the PLR group commute can be used to 
analyse music even further. One element from each group, for example T7 and R can 
be used to produce a commutative graph as shown below. The most famous piece 
related to this graph is the Canon in D by J. PACHELBEL:

&##

D major A major B minor F# minor

˙̇̇̇ ˙̇
˙̇ ˙̇̇̇ ˙̇

˙̇

          

D major A major

B minor F  minor

  T7

  T7

  R   R

Figure 5
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More Harmonies, more Symmetries...

Of course one could extend S to include dominant seventh, diminished, augmented 
and other more exotic chords. It is more difficult, but certainly not impossible to con-
struct groups similar to T/I and PLR in these cases (the definitions of P, L and R in 
terms of inversions could be the same, but the musical interpretation is different). For 
4-note chords, we would then get a 3-dimensional and tone net and a 4-dimensional 
torus. We can consider tuning systems where notes are not equally spaced.

Instead of looking at chromatic notes as points on a circle, we could consider the 
projective line with 11 elements together with a point at infinity. The projective lin-
ear group PGL(2, /11) acts on this line in the natural way and the action is sharply 
triply transitive. This means that PGL(2, /11), which has size 12×11×10 = 1320, 
takes any 3-note chord to any other such chord. We can consider even more compli-
cated groups which are quadruply or quintuply transitive: the Mathieu Groups:

 – M11: quadruply sharply transitive group of permutations of 11 elements
   has 11×10×9×8 = 7920 elements
 – M12: quintuply sharply transitive group of permutations of 12 elements
   has 12×11×10×9×8 = 95 040 elements
 – M23: quadruply transitive group of permutations of 23 elements
   has 23×22×21×20×48 = 10 200 960 elements
 – M11: quintuply transitive group of permutations of 24 elements
   has 23×23×22×21×20×48 = 244 823 040 elements

All Mathieu Groups (which arise as symmetries of so called Steiner Systems) are Spo-
radic Simple Groups, the largest of which is the Monster Group of size ≈ 8×1053. As 
John Baez concluded in [1], the new ideas above are rather too symmetric to have an 
application in music theory. On the other hand there are still many possibilities to 
explore the music of mathematics…
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Love and Tensor Algebra

Stanisław Lem
translated by Michael Kandel

Stanisław Lem (1921–2006) was a Polish science fiction and philosophy writer. The 
following poem is an extract from The Cyberiad (1967), a series of humorous short 
stories from a mechanical universe inhabited by robots. It is what you are given when 
you ask Electronic Bard (an ultimate poem writing machine) to write a “love poem, 
lyrical, pastoral, and expressed in the language of pure mathematics”.

Come, let us hasten to a higher plane
Where dyads tread the fairy fields of Venn,

Their indices bedecked from one to n
Commingled in an endless Markov chain!

Come, every frustum longs to be a cone
And every vector dreams of matrices.

Hark to the gentle gradient of the breeze:
It whispers of a more ergodic zone.

In Riemann, Hilbert or in Banach space
Let superscripts and subscripts go their ways.

Our asymptotes no longer out of phase,
We shall encounter, counting, face to face.

I'll grant thee random access to my heart,
Thou'lt tell me all the constants of thy love;
And so we two shall all love's lemmas prove,

And in our bound partition never part.

For what did Cauchy know, or Christoffel,
Or Fourier, or any Boole or Euler,

Wielding their compasses, their pens and rulers,
Of thy supernal sinusoidal spell?

Cancel me not – for what then shall remain?
Abscissas some mantissas, modules, modes,

A root or two, a torus and a node:
The inverse of my verse, a null domain.

Ellipse of bliss, converge, O lips divine!
the product of four scalars it defines!

Cyberiad draws nigh, and the skew mind
Cuts capers like a happy haversine.

I see the eigenvalue in thine eye,
I hear the tender tensor in thy sigh.

Bernoulli would have been content to die,
Had he but known such a2 cos 2φ!

The Editors are most grateful to Lem’s heirs Barbara and Tomasz Lem and to Houghton
Mifflin Harcourt Publishing for granting us permission to print this poem.
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The Formula of Love

Sophie Dundovic, St John’s College

The right time to get married

We seek to find the answers of many of life’s most baffling questions by using 
mathematics. But are there some things for which we cannot devise a formula? Pro-
fessor Tony Dooley from the University of New South Wales in Australia seems to 
think not. He has come up with a formula to calculates the optimal age at which a 
man should propose. But men beware, this method has only a 37% success rate. It 
may not be quite as accurate as we mathematicians would like, but given that the 
divorce rate is predicted to rise further this year, perhaps it is worth thinking about!

Whether we can turn matters of the heart into a few neat lines of equations can be 
fiercely debated. The method makes many assumptions, and clearly there is room for 
improvement, but this is an intriguing application to mathematics. Where n candi-
dates of marriage material exist and become available in a random order it is optimal 
to maximise the probability of choosing the best candidate at the ideal time in life.  
Professor Dooley has done this by using a decision rule.  

To make use of the Fiancée Formula a man should propose to the first woman 
he dates after he has reached his optimal proposal age, provided she is the best can-
didate so far. For those mathmos who do not want to leave marriage to fate the for-
mula goes as follows:

Let n be the latest age at which you want to be married.
Let p be the earliest age you would consider getting married.
Your optimal proposal age is p + 0.368(n − p).

The magic number 0.368 can be deduced using a method called optimal stopping 
and using the rather complicated sum

n−k+1∑
r=2

(n− k)

n

(n− k − 1)

n− 1
...
(n− k − r + 2)

n− r + 2

k

n− r + 1)

1

r − 1

It is left to the reader to decide how deeply they feel mathematics can delve into 
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these unpredictable matters, but for those who are interested documented attempts 
to solve the ‘marriage problem’ go back to 1960 and there is further information on 
the University of New South Wales’ webpage.

How to find girls in the galaxy

However knowing the ideal age to get married still leaves one with the problem of 
finding a partner. Fortunately Peter Backus from the University of Warwick has de-
veloped a way to estimate the number of available and suitable partners using a 
rather unexpected version of the Drake equation.

Instead of estimating the number of highly evolved civilisations in our galaxy, he 
wants to estimate the number of women in London with whom he would likely find to 
be suitable partners. Let N be the population of the United Kingdom. We then have 
to estimate the following parameters which very much depend on how “picky you are”:

 fS = proportion of humans with the right Sex (male/female)
 fL = proportion of the above living in the right Location
 fA = proportion of the above at the right Age
 fP = other Preferences such as education, physical attractiveness, etc.

Now X = N × fS × fL × fA × fP gives the number of people in the population who 
meet your dating requirements. One can have an infinite number of additional prefer-
ences, but clearly if this is the case the probability of meeting a suitable mate will 
tend to zero. We have quantified the well known fact that the pickier you with part-
ners the less likely you are to be ‘lucky in love’!

If you compare this to the size of the population as a whole, you see that the 
chance of meeting one of these suitors is slim.  The probability that (given that suitor 
remains oblivious to the fact you have applied a formula to them) they will want to 
marry (or date) you reduces your chances of finding love even further. However, ac-
cording to Backus’ publication (and general life experience) it is still more likely to 
find a perfect partner than to speak to an alien.
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Writing about Mathematics

Dr Clifford A. Pickover

The Beauty and Utility of Mathematics

“An intelligent observer seeing mathematicians at work might conclude that
they are devotees of exotic sects, pursuers of esoteric keys to the universe.”

— Philip Davis and Reuben Hersh, The Mathematical Experience

When I write mathematics books intended for popular audiences, I often mention 
how mathematics has permeated every field of scientific endeavour and plays an in-
valuable role in biology, physics, chemistry, economics, sociology, and engineering.  
Mathematics can be used to help explain the colours of a sunset or the architecture of 
our brains. Mathematics helps us build supersonic aircraft and roller coasters, simu-
late the flow of Earth’s natural resources, explore subatomic quantum realities, and 
image faraway galaxies. Mathematics has changed the way we look at the cosmos.

My personal desire to show how mathematics plays a role in a range of applica-
tions applies, in particular, to my most recent popular mathematics book, The Math 
Book: From Pythagoras to the 57th Dimension [1], which discusses and illustrates 250 
milestones in the history of mathematics.  In this book, I provide readers with a taste 
for mathematics using very few formulas, while stretching and exercising the imagina-
tion. However, the topics in this book are not mere curiosities with little value to the 
average reader. In fact, reports from the U.S. Department of Education suggest that 
successfully completing a mathematics class in high school results in better perform-
ance at university, regardless of the degree the student chooses to pursue [2].

The usefulness of mathematics allows us to build spaceships and investigate the 
geometry of our universe. Numbers may be our first means of communication with 
intelligent alien races. Some physicists, such as American theoretical physicist Michio 
Kaku, have even speculated that an understanding of higher dimensions and of 
topology — the study of shapes and their interrelationships — may someday allow us 
to escape our universe, when it ends in either great heat or cold, and then we could 
call all of space-time our home [3].
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Simultaneous discoveries have often occurred in the history of mathematics. As I 
mention in my book The Möbius Strip [4], in 1858 the German mathematician 
August Möbius (1790-1868) simultaneously and independently discovered the Möbius 
strip (a wonderful twisted object with just one side) along with a contemporary 
scholar, the German mathematician Johann Benedict Listing (1808–1882).  In a simi-
lar way, calculus was developed independently by English polymath Isaac Newton 
(1643–1727) and German mathematician Gottfried Wilhelm Leibniz (1646–1716). It is 
curious that so many discoveries in science were made at the same time by people 
working independently.  For another example, British naturalists Charles Darwin 
(1809–1882) and Alfred Wallace (1823–1913) both developed the theory of evolution 
independently and simultaneously. Similarly, Hungarian mathematician János Bolyai 
(1802–1860) and Russian mathematician Nikolai Lobachevsky (1793–1856) seemed to 
have developed hyperbolic geometry independently, and at the same time.

Most likely, such simultaneous discoveries have occurred because the time was 
“ripe” for such discoveries, given humanity’s accumulated knowledge at the time the 
discoveries were made. Sometimes two scientists are stimulated by reading the same 
preliminary research of one of their contemporaries. On the other hand, mystics have 
suggested that a deeper meaning exists to such coincidences. Austrian biologist Paul 
Kammerer (1880–1926) wrote [5], “We thus arrive at the image of a world-mosaic or 
cosmic kaleidoscope, which, in spite of constant shufflings and rearrangements, also 
takes care of bringing like and like together.”  He compared events in our world to the 
tops of ocean waves that seem isolated and unrelated. According to his controversial 
theory, we notice the tops of the waves, but beneath the surface some kind of syn-
chronistic mechanism may exist that mysteriously connects events in our world and 
causes them to cluster.

Georges Ifrah in The Universal History of Numbers [6] discusses simultaneity when 
writing about the Mayan mathematics:

We therefore see yet again how people who have been widely separated in time or 
space have […] been led to very similar if not identical results […]. In some cases, 
the explanation for this may be found in contacts and influences between different 
groups of people […]. The true explanation lies in what we have previously re-
ferred to as the profound unity of culture: the intelligence of homo sapiens is 
universal and its potential is remarkably uniform in all parts of the world.

Many entries in my books deal with whole numbers, or integers. The brilliant 
mathematician Paul Erdős (1913–1996) was fascinated by number theory — the 
study of integers — and he had no trouble posing problems, using integers, that were 
often simple to state but notoriously difficult to solve. Erdős believed that if one can 
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state a problem in mathematics that is unsolved for more than a century, then it is a 
problem in number theory.

Ancient civilisations, such as the Greeks, had a deep fascination with numbers. 
Could it be that in difficult times numbers were the only constant thing in an ever-
shifting world? To the Pythagoreans, an ancient Greek sect, numbers were tangible, 
immutable, comfortable, eternal — more reliable than friends, less threatening than 
Apollo and Zeus.

I enjoy pointing out to readers that many aspects of the universe can be expressed 
by whole numbers. Numerical patterns describe the arrangement of florets in a daisy, 
the reproduction of rabbits, the orbit of the planets, the harmonies of music, and the 
relationships between elements in the periodic table. Leopold Kronecker (1823–1891), 
a German algebraist and number theorist, once said, “The integers came from God 
and all else was man-made.” His implication was that the primary source of all 
mathematics is the integers.

Since the time of Pythagoras, the role of integer ratios in musical scales has been 
widely appreciated.  More importantly, integers have been crucial in the evolution of 
humanity’s scientific understanding.  For example, French chemist Antoine Lavoisier 
(1743–1794) discovered that chemical compounds are composed of fixed proportions 
of elements corresponding to the ratios of small integers.  This was very strong evi-
dence for the existence of atoms. In 1925, certain integer relations between the wave-
lengths of spectral lines emitted by excited atoms gave early clues to the structure of 
atoms.  The near-integer ratios of atomic weights were evidence that the atomic nu-
cleus is made up of an integer number of similar nucleons (protons and neutrons). 
The deviations from integer ratios led to the discovery of elemental isotopes (variants 
with nearly identical chemical behaviour but with different numbers of neutrons).

Small divergences in the atomic masses of pure isotopes from exact integers con-
firmed Einstein’s famous equation E = mc2 and also the possibility of atomic bombs.   
Integers are everywhere in atomic physics. Integer relations are fundamental strands 
in the mathematical weave — or as German mathematician Carl Friedrich Gauss 
1777–1855) said, “Mathematics is the queen of sciences — and number theory is the 
queen of mathematics.”

Our mathematical description of the universe grows forever, but our brains and 
language skills remain entrenched. New kinds of mathematics are being discovered or 
created all the time, but we need fresh ways to think and to understand. For exam-
ple, in the last few years, mathematical proofs have been offered for famous problems 
in the history of mathematics, but the arguments have been far too long and compli-
cated for experts to be certain they are correct. Mathematician Thomas Hales had to 
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wait five years before expert reviewers of his geometry paper — submitted to the 
journal Annals of Mathematics — finally decided that they could find no errors and 
that the journal should publish Hale’s proof, but only with the disclaimer saying they 
were not certain it was right! Moreover, mathematicians like Keith Devlin have ad-
mitted in The New York Times [7] that “the story of mathematics has reached a 
stage of such abstraction that many of its frontier problems cannot even be under-
stood by the experts.” If experts have such trouble, one can easily see the challenge of 
conveying this kind of information to a general audience. We do the best we can. 
Mathematicians can construct theories and perform computations, but they may not 
be sufficiently smart to fully comprehend, explain, or communicate these ideas.

A physics analogy is relevant here. When Werner Heisenberg worried that human 
beings might never truly understand atoms, Bohr was a bit more optimistic.  He re-
plied in the early 1920s, “I think we may yet be able to do so, but in the process we 
may have to learn what the word understanding really means.” Today, we use com-
puters to help us reason beyond the limitations of our own intuition. In fact, experi-
ments with computers are leading mathematicians to discoveries and insights never 
dreamed of before the ubiquity of computers. Computers and computer graphics al-
low mathematicians to discover results long before they can prove them formally, and 
open entirely new fields of mathematics. Even simple computer tools like spreadsheets 
give modern mathematicians power that Gauss, Euler, and Newton would have lusted 
after. As just one example, in the late 1990s, computer programs designed by David 
Bailey and Helaman Ferguson helped produce new formulas that related π to log 5 
and two other constants. As Erica Klarreich reports in Science News [8], once the 
computer had produced the formula, proving that it was correct was extremely easy. 
Often, simply knowing the answer is the largest hurdle to overcome when formulating 
a proof.

Mathematical theories have sometimes been used to predict phenomena that were 
not confirmed until years later. Maxwell’s Equations, for example, predicted radio 
waves. Einstein’s field equations suggested that gravity would bend light and that the 
universe is expanding.  Physicist Paul Dirac once noted that the abstract mathemat-
ics we study now gives us a glimpse of physics in the future. In fact, his equations 
predicted the existence of antimatter, which was subsequently discovered. Similarly, 
mathematician Nikolai Lobachevsky said that “there is no branch of mathematics, 
however abstract, which may not someday be applied to the phenomena of the real 
world.”

In my books, readers often encounter various interesting geometries that have been 
thought to hold the keys to the universe. Galileo (1564–1642) suggested that “Na-
ture’s great book is written in mathematical symbols.” Johannes Kepler (1571–1630) 
modeled the solar system with Platonic solids such as the dodecahedron. In the 
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1960s, physicist Eugene Wigner (1902–1995) was impressed with the “unreasonable 
effectiveness of mathematics in the natural sciences.” Large Lie groups, like E 8 may 
someday help us create a unified theory of physics. In 2007, Swedish-American cos-
mologist Max Tegmark published both scientific and popular articles on the mathe-
matical universe hypothesis, which states that our physical reality is a mathematical 
structure — in other words, our universe is not just described by mathematics — it is 
mathematics.

Simplicity in Book Writing

“At every major step, physics has required, and frequently stimulated,     
the introduction of new mathematical tools and concepts. Our present   
understanding of the laws of physics, with their extreme precision and   

universality, is only possible in mathematical terms.”
— Sir Michael Atiyah, “Pulling the Strings,” Nature

One common characteristic of mathematicians is a passion for completeness — an 
urge to return to first principles to explain their works. As a result, readers must 
often wade through pages of background before getting to the essential findings. To 
avoid this problem, many popular mathematics writers, like me, find it useful to keep 
book entries short. Of course, this approach has some disadvantages. In just a few 
paragraphs, we cannot go into any depth on a subject. However, my philosophy is 
always to provide suggestions for further reading. While I sometimes list primary 
sources, I have often explicitly listed excellent secondary references that readers can 
often obtain more easily than older primary sources. Readers interested in pursuing 
any subject can use the references as a useful starting point.

When many individuals contribute to a mathematical idea, it can be a challenge to 
assign an appropriate historical date. Often, I have used the earliest reasonable date, 
but sometimes I have surveyed colleagues and decided to use the date when a concept 
gained particular prominence. For example, consider the Gray code, named after 
Frank Gray, a physicist at Bell Telephone Laboratories in the 1950s and 1960s.  Dur-
ing this time, these kinds of codes gained particular prominence, partly due to his 
patent filed in 1947 and the rise of modern communications. Thus, I date the Gray 
Code entry to 1947, although it might also have been dated much earlier, because the 
roots of the idea go back to Émile Baudot (1845–1903), the French pioneer of the 
telegraph. In any case, I generally attempt to provide readers with a feel for the span 
of possible dates in each entry in a “Notes and Further Reading” section.

Scholars sometimes have disputes over attributing discoveries to individuals. For 
example, author Heinrich Dörrie cites four scholars who do not believe that a particu-

Writing about Mathematics 57



lar version of Archimedes Cattle Problem is due to Archimedes, but he also cites four 
authors who believe that the problem should be attributed to him [9]! Scholars also 
dispute the authorship of Aristotle’s Wheel Paradox. Where possible, I mention such 
disputes either in the main text or the “Notes and Further Reading” section.

Even the naming of a theorem can be a tricky business.  For example, mathemati-
cian Keith Devlin writes in his 2005 column for The Mathematical Association of 
America [10]:

Most mathematicians prove many theorems in their lives, and the process 
whereby their name gets attached to one of them is very haphazard. For in-
stance, Euler, Gauss, and Fermat each proved hundreds of theorems, many of 
them important ones, and yet their names are attached to just a few of them. 
Sometimes theorems acquire names that are incorrect. Most famously, perhaps, 
Fermat almost certainly did not prove “Fermat’s Last theorem”; rather that 
name was attached by someone else, after his death, to a conjecture the French 
mathematician had scribbled in the margin of a textbook. And Pythagoras’s 
theorem was known long before Pythagoras came onto the scene.
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In closing, let us note that mathematical discoveries provide a framework in which 
to explore the nature of reality, and mathematical tools allow scientists to make pre-
dictions about the universe; thus, the discoveries mentioned in books on the history 
of mathematics are among humanity’s greatest achievements. For me, mathematics 
cultivates a perpetual state of wonder about the nature of mind, the limits of 
thoughts, and our place in this vast cosmos.

Our brains, which evolved to enable us to run from lions on the African savanna, 
may not be constructed to penetrate the infinite veil of reality. We may need mathe-
matics, science, computers, brain augmentation, and even literature, art, and poetry 
to help us pierce the shrouds. For those of you who do embark on reading the The 
Math Book from cover to cover, look for the connections, gaze in awe at the evolution 
of ideas, and sail on the shoreless sea of imagination.

As the island of knowledge grows, the surface that makes contact with mystery 
expands. When major theories are overturned, what we thought was certain 
knowledge gives way, and knowledge touches upon mystery differently. This 

newly uncovered mystery may be humbling and unsettling, but it is the cost of 
truth. Creative scientists, philosophers, and poets thrive at this shoreline.

— W. Mark Richardson, “A Skeptic’s Sense of Wonder,” Science
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Leaving the Textbook closed
Exciting Mathematics at School Level

James Gill and Tom Eaves, St John’s College

What goes on in an undergraduate mathematics degree is not always well under-
stood by laymen. Mathematics in schools is often taught by tackling many hundreds 
of short exercises on certain methods, and then reproducing them in the exam. This 
suggests that a maths degree will be more of the same, repetitive approach: a notion 
we are eager to dispel! With this in mind, we decided to visit Tom’s secondary school 
during the Easter vacation, and carry out a couple of sessions on interesting maths 
with Years 10 and 11. We hope that this article will encourage you to consider trying 
something similar yourself.

Our aims for the lessons were first to get the children doing something exploratory 
with maths and, second, to give some inkling of the importance of proof, which is 
(perhaps rightly) neglected at GCSE.

The first, and more successful, session was based on a problem familiar to those 
who have grappled with IA probability examples sheets: Suppose Mary and Bob play 
a game in which they toss a fair coin until either the sequence HHH appears or the 
sequence THH appears. Who has a better chance of winning? One bright spark (irri-
tatingly!) spotted the answer immediately, so we set him to deciding what winning 
sequence he would pick given a free choice. It is probably a good idea to have some 
kind of contingency task in mind if you do stumble across Terence Tao. The rest 
formed pairs and used the random number function on their calculators to simulate 
coins and play the game repeatedly. After fifteen or twenty minutes, we collated the 
results, observing – fortunately – a clear win for Bob in the classroom, although not 
in every pair (which lead to an interesting discussion about the nature of repeated 
experimentation). We then marshalled a class discussion to find a mathematical ex-
planation for Bob’s success.

This all seemed to go down very well, this kind of exploratory work being sadly 
rare in schools. The second half of the hour we filled with two rather counter-intuitive 
results: the famous Birthday problem, and the Newton-Pepys problem. Again, most 
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results in the classroom are thoroughly predictable, whereas an unexpected result is a 
key part of the joy of mathematics.

In the second session, we decided to show two proofs of Pythagoras' Theorem, 
which is commonly stated but not proven at GCSE. We then discussed what assump-
tions we had made in our proofs, and this lead to a debate on why there are 180º in a 
triangle. When the proof of this was exhibited, we gave Euclid’s axioms, and they 
seemed to enjoy this more thorough approach to explaining results. A couple of the 
students, quite rightly, showed some doubt at Euclid’s parallel line axiom, which lead 
to a brief discussion of spherical geometry and why it is important to fully under-
stand assumptions you make. We then moved back to Pythagoras’ Theorem, and 
asked them to confirm examples of Pythagorean Triples, before posing the question as 
to whether such triples exist for powers greater than 2. Obviously no-one could find 
one, but we provided our own examples for the students to test on their calculators, 
namely the incorrect result 178212 + 184112 = 192212. We asked whether anyone could 
tell us why this was wrong, and after a minute or so we gave them a clue by suggest-
ing they think about odd and even numbers. This helped to portray the importance 
of mathematical rigour, and why computer accuracy issues can very easily let you 
down. We concluded with a full statement of Fermat’s Last Theorem, which as-
tounded many of the students in the class.

At the end of each lesson, when we gave time for questions both about maths and 
a more general nature such as applications to Oxbridge (CUSU’s excellent Target 
Schools resources proved extremely useful). The students felt they were benefiting 
greatly from access to a student able to answer these questions, and we were glad to 
see their enthusiasm showing at such an early stage of their education. Feedback from 
staff at the school was positive, the material seemed to have come across well. We 
thoroughly enjoyed the day; if you think you might too, then why not see if a local 
school might value your input? It is a rewarding experience not to be missed lightly!
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A mathematical Interlude
6 Extracts from 60 Issues full of Humour and Fun

It is tradition for Eureka to include recreational problems and mathematical humour. In 
particular, authors liked to submit their research in poems rather than prose. Here is a 
selection of six of some of the most amusing articles from 60 issues of Eureka. 

A Mathematical Crossword (E.P.H. and C.H.B.) Eureka 1, 1939

An Alphabet (“Pluto”) Eureka 10, 1948
A for Analysis, first the list
Of subjects whose purpose is usually missed.

B is for Body, an object most frigid
Which even in heat waves stays perfectly rigid.

C is for Conic: oh! common of curves,
It crops up so often it gets on your nerves.

D is for ∇2, for div and for det,
And several others we try to forget.

E for ε that’s greater than nought.
This magical symbol will save us much thought.

F is for Field; not where buttercups grow,
But where magnets and charges bring currents in tow.

G is for Gravity, dear to us all,
Or what else would happen to Newton’s old “ball”?
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1 2 3 4

5 6 7

8 9 10

11 12 13

14 15

Across Down
1. Half a horse.
3. 9 down in different order.
5. 11 times 3 down.
6. 2 down plus 12 down reversed.
8. Square.
10. Prime.
11. 2-figure number.
12. A regular solid.
14. Lord Nelson.
15. 1 across plus 13 down.

1. Magazine without the 
printers.

2. Perfection.
3. One-eleventh of 5 across.
4. Square.
7. Without the grace of Noel 

Coward.
9. The French half of the horse.
12. Odd.
13. Prime.



H is for Hydromechanics, a study
Of sources and streams — not the kind that are muddy!

I for Infinity, mythical place
Where circles and parallel lines show a face.

J for Jacobian, a pleasant device
For making the nastiest integral nice.

K is for Kepler, who left us some laws
Of planet’ry motion, effect but not cause.

L stands for so many things, that, in doubt,
I’ve chosen the Limit that’s often about.

M is for Matrix, a mighty array —
If we didn’t leave blanks we’d be writing all day.

N is for Normal, a misleading word,
For a “non-normal” normal’s not even absurd!

O is for Orbit; we’ll readily trace
The path of a body that’s moving in space.

P is for Particle having no size;
It’s wonderful what it can do when it tries.

Q is for Quadric, the Conic’s big brother;
What’s true for the one may be true for the other.

R is for Rank; but the Major is out,
For here it’s the Minors we’re worried about.

S is for Sign that’s so often mislaid,
Explaining mistakes that should never be made.

T is for Trip.: how I wish that implied
A journey by car or a char-à-banc ride.

U for Uniqueness, important, I’m sure,
But the proofs of the theorems are rather too pure.

V is for Vector: all lecturers say
That the sum is the same if you take it each way.

W must obviously stand for a Wave;
The problem arises: “How does it behave?”

x, y and z, from their own point of view,
Are complaining; “We have far too much work to do;
It seems that for axes we’re much better than
All the others; they use us whenever they can;
Though mathematicians may do as they like,
Beware! We may yet go on strike!”
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A Contribution to the Mathematical Eureka 13, 1953
Theory of Big Game Hunting (H. Pétard) 

Like many other branches of knowledge to which mathematical techniques have been 
applied in recent years, the Mathematical Theory of Big Game Hunting has a singularly 
happy unifying effect on the most diverse branches of the exact sciences. For the sake of 
simplicity of statement, we shall confine our attention to Lions (Felis leo) whose habitat 
is the Sahara Desert. The methods which we shall enumerate will easily be seen to be 
applicable, with obvious formal modifications, to other carnivores and to other portions of 
the globe.

1. The Method of Inverse Geometry. We place a spherical cage in the desert, enter it, 
and lock it. We perform an inversion with respect to the cage. The lion is then in the 
Interior of the cage and we are outside.

2. The Bolzano-Weierstrass Method. Bisect the desert by a line running N-S. The lion 
is either In the E portion or in the W portion; let us suppose him to be in the W portion. 
Bisect this portion by a line running E-W. The lion is either in the N portion or the the S 
portion, let us suppose him to be in the N portion. We continue this process indefinitely, 
constructing a sufficiently strong fence about the chosen portion at each step. The diame-
ter of the chosen portions approaches zero, so that the Lion is ultimately surrounded by a 
fence of arbitrarily small perimeter.

3. The “Mengentheoretisch” Method. We observe that the desert is a separable space. 
It therefore contains an enumerable dense set of points, from which can be extracted a 
sequence having the lion as limit, We then approach the lion stealthily along this se-
quence, bearing with us suitable equipment.

4. The Peano Method. Construct, by standard methods, a continuous curve passing 
through every point of the desert. It has been shown that it is possible to traverse such a 
curve in an arbitrarily short time. Armed with a spear, we traverse the curve in a time 
shorter than that in which a lion can move his own length.

5. The Topological Method. We observe that a lion has at least the connectivity of the 
torus. We translate the desert into four-space. It is then possible to carry out such a deforma-
tion that the lion can be returned to three-space in a knotted condition. He is then helpless.

6. The Dirac Method. We observe that wild lions are, ipso facto, not observable in the 
Sahara Desert. Consequently, if there are any lions in the Sahara, they are tame. The 
capture of a tame lion may be left as an exercise for the reader.

7. The Schrödinger Method. At any given moment there is a positive probability that 
there is a lion in the cage. Sit down and wait.

8. The Thermodynamical Method. We construct a semipermeable membrane, perme-
able to everything except lions, and sweep it across the desert.

Reprinted in Eureka 13 from the American Mathematical Monthly, Vol. XLV, NO.7 (1938)
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Chessmas (R. Schwarzenberger) Eureka 22, 1959

Seven mathematicians were once shipwrecked on an island. They immediately set to 
work mining chalk, painting blackboards, weaving dusters and carving chessmen so that 
they would not have to abandon the mode of life which they found so congenial. Their 
housing problems were easily solved: around the cliffs of the island were seven caves each 
with access to a path along the shore, and easily reached from the Lone Pine which 
marked the centre of the island.

Each evening they would meet in one of the caves and decide where each should sleep 
that night by the following device: two by two they would play chess until a game was 
won or lost. Then the winner would leave (clockwise) for the neighbouring cave. The loser 
(anticlockwise) would do the same. As soon as more than one person arrived at a cave 
the procedure would be repeated. Every night, no matter in what order the games were 
played, or how long they took, fourteen games were played to a result before the seven 
mathematicians slept separate and undisturbed.

But one of the mathematicians (wiser than the rest) slept longer than the others. For 
each night as the chess started he would withdraw to a comer and let the other six choose 
their partners. Knowing that in a few hours everyone would have left the cave he went 
straight to sleep. Even when someone arrived eager to play chess, he slept on, knowing 
that soon a second would arrive and that they would play chess and both depart.

The younger mathematicians met by the Lone Pine to discuss this antisocial behaviour 
and to find ways of ensuring that all should play more chess. Surely the system could be 
modified so that more than a mere fourteen games were played each night. And this is 
what they decided: Instead of starting all at the same cave each of the seven mathemati-
cians would go to the Lone Pine and roll a stone to decide at which cave he should begin. 
As soon as two arrived at a cave chess would begin and the winner and loser would move 
as before. By this method, it was hoped, more than fourteen games would sometimes be 
played. If by any chance no games were played a special holiday called “Chessmas” would 
be declared the next day.

In high hopes of Chessmas the stone rolling began. Alas! That night the chess contin-
ued until the dawn and would have gone on forever had they been faithful to their plan. 
If only, they said, we had been shipwrecked on a shore of infinite extent and unlimited 
equidistant caves. Then we would have variety but never more than twenty games each 
night.

The younger mathematicians were not put off. They constructed an eighth cave and 
worked the plan just as before. Chessmas now occurs several tunes a year and a special 
holiday of seven days has been promised should there be a recurrence of the disaster 
which caused the building of the eighth cave. So far this hasn’t happened, nor indeed has 
a night with more than twenty games. Can either occur?

The reader is invited to check the statements made and to solve the questions raised. 
Will it do him any good? Yes, if ever he is shipwrecked with 2n other unfortunate 
mathematicians.
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Ode to the Negative Gaussian Curvature Eureka 36, 1973
of Potato Crisps (Colin Vout)

Of all the unsolved problems that
 Confront us in this world,
The biggest mystery to me
 Is: why are crisps so curled?

Their curvature is negative;
 Whichever way they went
At first, you'll find to compensate
 They’re oppositely bent.

Now, when it’s plunged into the oil
 How does a crisp react?
Does it expand, and buckle up,
 Or does the thing contract?

Or does It seek to minimise
 Its surface area?
So, like a soap-film, there would be
 No max- or minima.

Considering an element:
 If forces balance out,
Then ∇2 crisp is zero and
 The same thing comes about.

But still, some crisps have, locally,
 A curving more than nought;
Though by and large its sign will be
 A minus, as it ought.

Imagine, now, the heated vat;
 The oil begins to bubble—
A sliced potato enters and
 Proceeds to bend up double.

Perhaps uneven heating makes
 One side shrink rather more;
Then if the crisp should overturn
 It curls up, as before.

And so the curve is negative;
 But now we wonder what
Would happen should it not reverse,
 For then the curve is not.

And anyway the temperature
 Is constant, I feel sure;
For otherwise some overcook
 While other crisps stay raw.

Or do the bubbles, rising up,
 Distort the crisp that way?
But crisps are sometimes bent in half;
 Explain that, if you may.

The facts we know about the world
 Should help us pass this hurdle;
Or is this an example of
 The theorem proved by Gödel?

O Archimedes, answer this.
 Our patron and our hero:
Why is the curvature of crisps
 So clearly less than zero?

Footnote: A physicist has suggested a reason for the phenomenon in question is that the 
inner part of a potato contains more water than the outer; therefore it shrinks more on 
cooking; therefore there is in effect a circular frame holding the surface within it open; 
therefore the crisp is analogue to an open universe; and it is well known that a universe is 
open iff its Gaussian curvature is negative or zero. (How about a general cosmology of 
crisps?)
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From the Mathematical Innovations Eureka 56, 2004
Catalogue  (Chris Cummins)
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The Millennium Prize Problems
A Series of Talks by the Archimedeans

Throughout the next year, the Archimedeans are hosting a series of lectures on the 
seven Millennium Prize Problems. For this occasion we would like to tell you a bit 
more about their history.

The Millennium Prize Problems are a selection of seven of the most important and 
most difficult unsolved problems in Mathematics. They were stated by the Clay 
Mathematics institute in 2000 and tie in with a list of 23 problems which were listed 
by David Hilbert in 1990. Five of these 23 problems are still unsolved and the Rie-
mann Hypothesis has been included in both Hilbert’s and the Millennium problems.

The Clay Institute will award $ 1,000,000 for a correct solution.

The Riemann Hypothesis
One of the most famous unsolved problem in mathematics states that all nontrivial 
zeros of the analytical continuation of the Riemann zeta function have a real part of 
1/2. A proof (or counterexample) of the hypothesis will have significant implications 
regarding the distribution of prime numbers and other results in number theory.

P versus NP
Can a computer quickly (that is, in polynomial time) find a solution to a given prob-
lem (these problems are called P), given that it can verify a certain solution quickly 
(these problems are called NP)? In other words, is NP a subset of P? The P versus 
NP problem the most important open question in theoretical computer science and 
has far-reaching consequences many areas.

Yang–Mills existence and the Mass Gap
Yang–Mills theory is a generalisation of the Maxwell laws of electromagnetism. It has 
some solutions which travel at the speed of light, i.e. its quantum version should de-
scribe massless particles such as gluons. However, the postulated effect of “colour 
confinement” only permits bound states of gluons to form massive particles. This is 
called the mass gap.
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The Hodge conjecture
The Hodge conjecture states that for projective algebraic varieties, Hodge cycles are 
rational linear combinations of algebraic cycles.

The Poincaré Conjecture (proven)
Every 2-dimensional surface which is both compact and simply connected is equiva-
lent to a sphere. The Poincaré conjecture states that this is also true for spheres with 
3-dimensional surfaces – a central problem in classifying 3-manifolds. The same ques-
tion had long been solved for all dimensions above three. 

The Poincaré conjecture was proved by Grigori Perelman in 2003, however he de-
clined both the Millennium award and a Fields Medal.

Navier–Stokes Equations
The Navier–Stokes equations describe the motion of fluids and are not very well un-
derstood. To solve the problem, you have to develop a mathematical theory to give 
insight into these equations.

The Birch and Swinnerton-Dyer Conjecture
This conjecture deals with equation defining elliptic curves over the rational numbers. 
It states that there is a simple way to tell whether such equations have a finite or 
infinite number of rational solutions. Hilbert’s 10th problem dealt with a more gen-
eral type of equations, and it was proven that there is no way to decide whether a 
given equation even has any solutions.

You can find more details about our series of talks on page 8 – they promise to be 
most interesting and an amazing opportunity to hear some of the best mathematical 
speakers.

By the way: this page is NOT the annual Archimedeans Problems Dive. However 
if you sent us a correct solution to any of the problems above (excluding the Poincaré 
conjecture) we would be delighted to publish it in the next issue of Eureka!

Philipp Legner,
St John’s College

The Millennium Prize Problems 69



Careers for Mathematicians

Here’s some good news. Unlike at many other Universities, you won’t have to lose 
any time from studying Mathematics in order to learn careers related stuff as part of 
the curriculum here at Cambridge. This will undoubtedly help you to become a bet-
ter mathematician, but unfortunately might leave you with some disadvantages in 
competing for opportunities after Cambridge.

What is the “careers related stuff” that intrudes into the curriculum at many other 
Universities? Much of it is based on a simple careers model. It goes like this. First 
understand yourself. Think about your skills, your knowledge, your personality, your 
interests, what motivates you, your preferred style of working, your short, medium 
and longer term goals in life, where you want to live and so on. Second, research the 
wide range of different options that could be open to you beyond your first degree – 
further education as well as employment or even time out. Then match what these 
require against the knowledge of yourself and select the paths that are right for you. 
Finally plan, and then implement, the necessary actions to move forward in your cho-
sen area/s. A key part of the planning includes getting an understanding of how se-
lection processes work for your chosen route, because, believe it or not, your Cam-
bridge degree studies alone probably won’t even get you in the door for an interview. 
You need to understand how to put together an application form or CV that works, 
and learn how to be convincing at interviews and assessment centres.

Here is some more good news. You can still do all this “careers related stuff” at 
Cambridge. We just provide it in a different way. There is a Careers Service here 
which offers a huge free programme of events, workshops, skill sessions, information, 
advice and guidance throughout the year, covering all of the above. The only differ-
ence is that it is there for you to dip into and to use as you wish outside the curricu-
lum. Moreover, it is available to you as a current undergraduate or postgraduate stu-
dent or at any time after you graduate.

So, if you haven’t yet found or used the Careers Service (even though you are pay-
ing for us with your fees) then start here: www.careers.cam.ac.uk. Please also visit us 
at Stuart House, Mill Lane, Cambridge (next to Mill Lane Lecture Rooms) and take 
a look at our Library and the many free publications there, particularly the best free 
publication in Cambridge – our book on CVs and Cover Letters.

Les Waters, Careers Advisor, CUCS
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Book Reviews

Sphere Packing, Lewis Carroll, and Reversi: Martin 
Gardner’s New Mathematical Dimensions
Martin Gardner
ISBN: 9780521747011, Price: £9.99 (paperback)

It is indisputable that Martin Gardner is one of the very 
best authors of recreational mathematics. For 25 years, he 
wrote the inspiring “Mathematical Games and Recrea-
tions” columns in Scientific America, as well as publishing 
more than 60 books, many of which were best sellers. 

Sphere Packing, Lewis Carroll, and Reversi comprises a col-
lection of 20 of the most interesting of these columns, rang-
ing from board games and the four-colour theorem to interesting properties of Pi. 
This updated edition also includes solutions and addenda for the individual chapters.

I especially enjoyed chapter 9 about “Mathemagic”, where here describes a number 
of mathematical tricks that can be done by moving along playing cards or random 
closed curves, or by rotating soda crackers. The book contains many other ideas,  
problems and thoughts regarding geometry, logic, probability and other fields.

 by Philipp Legner, St John’s College

Flatterland: Like Flatland, Only More So
Ian Stewart
ISBN: 9780738204420, Price: £16.95 (paperback)

117 years is a long time to wait for a sequel, but Flatterland 
does its best to rekindle Edwin Abbott's two-dimensional 
satirical fire from Flatland, with Stewart employing a simi-
larly witty style. No longer restricted to two dimensions, 
Stewart takes us on a geometric mindbender, visiting 
higher dimensions and fractional dimensions to illustrate 
fractals, topology, projective and hyperbolic geometry be-
fore exploring contemporary issues in physics such as time 
travel, quantum mechanics, black holes and relativity.
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Our heroine student is Victoria (Vikki) Line, a teenage line, and our hero teacher 
the vastly knowledgeable “Space Hopper”, and through the immensely powerful 
Virtual Unreality device they traverse the Mathiverse, spurring the story along 
with a mixture of twee puns, edgy dialogue and cutesy anecdotes. The book’s level 
is that of accessible to anyone with hunger, desire and mathematical curiosity, en-
tertaining, and informative enough for all but the most serious of readers. Despite 
the story petering out towards the end, with the physics consuming Vikki and the 
Hopper’s limelight, it’s nonetheless a learned, jocular and most of all enjoyable 
read.
 by Conor Travers, St John’s College

Introduction to Continuum Mechanics
Sudhakar Nair
ISBN: 9780521875622, Price: £40.00 (hardback)

This text approaches continuum mechanics by developing the 
idea of describing an object’s position both before and after 
a deformation, and discussing the changes in the forces expe-
rienced through this motion. Through doing this it develops 
ideas from an early stage by focusing on basis transforma-
tions and their relation to area and volume changes. This 
seems to be a standard and appropriate approach to solid 
bodies, but makes the chapter on fluid mechanics somewhat 
cumbersome for students familiar with the approach of the 
IB fluids course.

Although the book is based on a graduate course, it opens with a few chapters that 
essentially recap our first year Vector Calculus course and then quickly moves on to 
more complicated and subtle applications. The focus in this book is to use suffix no-
tation, which is a concise way of expressing mathematical reasoning, but the reader 
can’t help thinking that the significance of certain results would be more easily ap-
preciated if they were stated in dyadic notation. Indeed, the motivations behind cer-
tain arguments were regularly absent. There are problem questions at the end of each 
chapter, which despite often being separated from the relevant learning material by 
some distance, are of an appropriately challenging standard. This text achieves ex-
actly what would be expected from its title, providing a good introduction to a wide 
range of topics within this field, allowing the reader to quickly become fluent in this 
area’s language and techniques.
 by Tom Eaves, St John’s College
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Elements of Continuum Mechanics and Thermodynamics
Joanne L. Weger, James B. Haddow
ISBN: 9780521866323, Price: £40.00 (hardback)

This textbook covers similar material to that of Nair’s Intro-
duction to Continuum Mechanics, as discussed above. This 
text has a more motivational approach, with each section 
briefly discussing the physical significance of the method and 
of the results. The introduction again recaps Vector Calculus, 
but it also focuses heavily on basis transformations, providing 
a more detailed account as may be found in Linear Algebra. 
This text uses dyadic notation more often than the above text 
and, from an undergraduate perspective, gives more immediate visual understanding as 
to the meaning of its results. Again, the end of chapter exercises are interesting and of 
an appropriate volume, if slightly easier than in the previous text.

It does, however, have one oddity: its frequent references to Mathematica. Especially in 
the opening chapters, every other page contains a line similar to ‘and [the eigenvalues] 
can be determined directly by using Mathematica’ which at first sounds rather obtuse. 
Later in the book however, as is made clear in the blurb, Mathematica is used to em-
phasise examples and solutions and gives a refreshing if somewhat unusual feature. To 
summarise, the two textbooks cover similar material but in different styles. Both pro-
vide a good introduction to this field, and to choose between them is a matter of per-
sonal preference with regard to mathematical style, and of course mathematical back-
ground.
 by Tom Eaves, St John’s College

History of Mathematics: Highways and Byways
Amy Dahan-Dalmedico, Jeanne Peiffer, Sanford Segal
ISBN: 9780883855621, Price: £40.00 (hardback)

In lectures of the mathematical tripos, topics are usually 
presented in a most logical order possible: starting with basic 
axioms and definitions and then deducing more complex 
properties and theorems. However this is very different from 
the way Mathematics was developed over time. This book 
gives and illuminating insight into how mathematical ideas 
evolved, and why they were developed at the time they were. 

In 8 chapters, the authors cover topics such as Greek 
Mathematics, the development of Algebra, Analysis (in particular the notion of lim-
its) and Geometry, leading to the crossover of all three subjects in complex numbers 
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and abstract linear algebra. The chapters include many info-boxes with definitions, 
theorems and short outlines of proofs.

Although the book contains little information about number theory, topology, prob-
ability and most of applied mathematics, I recommend it to anybody with an interest 
in the history of Mathematics.
 by Philipp Legner, St John’s College

The Ultimate Painting
by Drop Artists, 1966
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The Archimedeans Problems Drives

Hints and Solutions

Question 1 (2009)
The answer is A – B = –78.8%.

Question 2 (2009)
First observe that f(x) =

√
(x− 4)2 + (x2 − 3)2 −√

x2 + (x2 − 2)2 . In Cartesian coordinates, 
let A = (4,3), B = (0,2) and let M = (x,x 2) be a point on the parabola y = x 2. Then clearly     
S = MA – MB ≤ AB = 2

√
5 .

Question 3 (2009)
(a) These are the odd primes written in base-6.  The next two are: 25, 31.
(b) Each term in this sequence is the number of letters when the previous number is written 

out (in English).  For example, there are six letters in ‘twelve’, so the next number is 6. 
There is some choice for the first number, but a possible solution is given: 73, 4.

(c) The nth term of this sequence is (n – 1)n for n = 1, 2, …. Therefore: 15625, 279936.
(d) These are the numbers with an odd number of 1’s in their binary expansion: 11, 13.
(e) These are the numbers between twin primes: 42, 60.

Question 4 (2009)
Observe that for all natural numbers k, exactly two of 4k, 4k + 1, 4k + 2, 4k + 3 are magic 
numbers, and their sum is 8k + 3 (This observation can be easily proved). Let k = 1,2,…,1003. 
This gives rise to 2006 magic numbers in the interval [4,4015]. 1 and 2 are not magic numbers, 
but 3 is, since 3 = (11)2. Similarly we see that 4016 is not a magic number but 4017 is, since 
4016 = (111110110000)2 and 4017 = (111110110001)2. Hence the sum of the first 2008 magic 
numbers is 8× (1 + 2 + + 1003) + 3×1003 + 3 + 4017 = 4035077.

Question 7 (2009)
For k ≥ 2 we have

2
(√

k + 1−
√
k
)
=

2√
k + 1−√

k
<

1√
k
<

2√
k +

√
k − 1

= 2
(√

k −√
k − 1

)

⇒ x > 2
1010025∑
k=2

(√
k + 1−

√
k
)
+ 1 = 2

(√
10052 + 1−

√
2
)
+ 1

         > 2× 2005− 2
√
2 + 1 = 2011− 2

√
2 > 2011− 2× 1.5 = 2008

We also have

x < 2
1010025∑
k=2

(√
k −√

k − 1
)
+1 = 2

(√
10052 − 1

)
+1 = 2×1004+1 = 2009

thus the integer part of x is 2008.
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Question 6 (2009)
To solve this question we must express the expectation in a convenient way:

 E [number of apples] =  
6∑

i=1

 E [number of apples from column i ]

  =  
6∑

i=1

 E [number of apples from column i ] P [still have the apples at B]

  =  
6∑

i=1

 E [number of apples from column i ] 2i−7

So we can redraw the orchard, where the number of apples in each tree is weighted by the prob-
ability that you still have them when you reach B: 

  1/64 5/32 0 3/4 1/4 2
  3/64 3/16 9/16 1/8 1/2 5/2
  1/16 9/32 1/2 1/4 0 1
 A 5/64 1/32 1/4 3/8 2 5/2 B 
   3/64 3/32 1/8 1/8 9/4 1
  1/32 1/16 5/16 7/8 3/4 7/2
  9/64 1/32 1/8 1 9/4 4

Working backwards from B, we can show that the greatest we can achieve is 391/64. 

Question 8
Richard might pick any of the 9 balls, as might Ed (independently of Richard), so we have 81 
elements in our sample space. When y = 1,2,3,4,5 any value of x in {1,2,…,9} satisfies the ine-
quality. For y = 6 we need x = 3,4,…,9 i.e. have 7 choices. For y = 7 we need x = 5,6,…,9 i.e. 
have 5 choices. For y = 8 we need x = 7,8,9 i.e. have 4 choices. Finally for y = 9 we need x = 9 
i.e. have one choice only. Thus the probability is

5× 9 + 7 + 5 + 3 + 1

81
=

61

81
.

Question 9
Carl Friedrich Gauss - Disquisitiones Arithmeticae

Isaac Newton - Arithmetica Universalis
Leonhard Euler - Vollständige Anleitung zur Algebra

Daniel Bernoulli - Hydrodynamique
Gottfried Leibniz - Explication de 

l’Arithmétique Binaire

Question 10 (2009)
Take a point K on PQ such that QA×QD = QK×QP, so A, 
K,P,D are on a circle.  Since A,B,C,D are on a circle we get 
�QKA = �QDP = �QBA, thus Q,K,B,A are on a circle. 
Therefore �QPD = �QAK = �QBK, thus B,K,P,C are on a 
circle. Therefore �KCP = �KBP = �AQK, so K,C,D,Q are on 
a circle. It follows that PE 2 = PC×PD = PK×PQ, so

PF 2 + PE 2 = QK×QP + KP×QP = QP 2

⇒  QP = 
√
172 + 192 =

√
650 = 5

√
26 .
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Question 12
Of the eleven teams, eight picked 0 and hence each won one point, while three teams tried 1 and 
thus received nothing. 

■

Question 2 (2010)
Dudeney, H. The Canterbury Puzzles. London: Thomas Nelson and Sons, Ltd. 1919
Volume considerations give at most 25 pieces. In reality, only 24 fit. Cut off half an inch from 
the longest side, then the block has dimensions 7 1

2

′′ × 4′′ × 3 3
4

′′ . Cutting that into three slabs 
of 1 1

4

′′  produces three rectangles 7 1
2

′′ × 4′′ , to be divided into rectangles of 2 1
2

′′ × 1 1
2

′′ . It is 
easy to see that eight smaller pieces fit (note that 4 = 21

2 + 1 1
2

 while 7 1
2 = 5× 1 1

2 = 3× 2 1
2

).

Question 3 (2010)
Points to be awarded by the length of the maximal increasing subsequence.

B 1209.6 = number of seconds in a millifortnight
E 1727 = year of Isaac Newton's death
G 1728 = great gross
C 1729 = the smallest number expressible as the sum of two positive cubes in two different ways
F 1836 = (rest mass of a proton) / (rest mass of an electron)
D 1936 = year of the foundation of Archimedeans
A 2056 = magic constant of 16 × 16 normal magic square

Question 4
Gardner, M. More Mathematical Puzzles and Diversions. London: G. Bell and Sons Ltd, 1963
It is in Jones's best interest to wait until he has a single opponent, and then aim a first shot at 
him; until then he should fire in the air. The other opponents will first shoot at each other.

Smith's probability of survival if he fires first at Brown is 1/2 (he will kill Brown, will survive 
Jones' attack with probability 1/2, and will then kill Jones). If Brown fires first at Smith, the 
probability is reduced to 1/5 × 1/2 = 1/10. Since these two orders are equally likely, the overall 
survival probability is 1/4 + 1/20 = 3/10.

Brown's chance of outliving Smith is 2/5 (the probability that he goes first times the probability 
that he kills Smith). He now faces Jones, who fires first. Assuming that Brown survived n at-
tacks from Jones already, his chance of surviving the (n+1)st one is 1/2 and his chance of kill-
ing Jones afterwards and terminating the process is 4/5. Therefore, his chance of surviving Jones 
is 4/10 + (4/10)2 + (4/10)3 +  = 4/9. His overall chance of surviving is then 2/5 × 4/9 = 8/45.

The probability that Jones is the last man standing is 1 − 3/10 − 8/45 = 47/90.

Question 5 (2010)
USA Mathematics Talent Search, 1998-99
We rewrite the ellipse as

(x− 20)2

20× 2010
+

(y − 10)2

10× 2010
= 1,

and draw the lines through its centre (20,10). We consider the 5 areas labelled in the diagram as 
A, B, C, D, E. Due to the symmetry about the centre of the ellipse, the area we are looking for 
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is 2 (A−B + D−E). Moreover, we see that A = C + E and D = B + C, so the answer is in fact 
4C. Since C is bounded by the axes and the centre, the answer is 4 × 20 × 10 = 800.

Question 6
Fujimura, K. The Tokyo Puzzles. London: Frederick Muller Limited, 1981
See to the right.

Question 7
Fujimura, K. The Tokyo Puzzles. London: Frederick Muller Limited, 1981
6 moves are necessary:

 (2,2)(1) → (2,1)(2) → (1,1)(4) → (1,2)(1) → (2,2)(2) → (2,1)(4) → (3,1)(6).

Question 10
USA Mathematics Talent Search, 1999-00
The pile is 36 rows high. Inside the pile, in a tetrahedral packing, each row is 23

√
6 . The total 

height of the pile is

(36− 1)× 2

3

√
6 + 2 =

(
70
√
6

3
+ 2

)
cm.

Question 8
(1) 1,1,4,9,25,64,169,441,… (squares of the Fibonacci sequence)
(2) 1,11,21,1211,111221,312211,13112221,… (self-describing sequence − read it out-loud)
(3) 1,2,4,7,28,33,198,205,1640,… (1 + 1, (1 + 1) ∗ 2, (1 + 1) ∗ 2 + 3, ((1 + 1) ∗ 2 + 3) ∗ 4, …)
(4) 3,3,5,4,4,3,5,5,… (number of letters in “one”, “two”, “three”, etc.)
(5) 1,2,5,10,20,50,100,200 (current UK coins)
(6) 1,11,4,4,20 (diagonal sequence of the above answers)

Question 11
1202 - Leonardo Fibonacci - Book of the Abacus
1644 - René Descartes - Principia philosophiae
1705 - Edmond Halley - Synopsis Astronomia Cometicae
1724 - Abraham De Moivre - Annuities on Lives
1730 - James Stirling - The Differential Method
1754 - Sir Isaac Newton - An Historical Account of Two Notable Corruptions of Scripture
1801 - Carl Friedrich Gauss - Disquisitiones Arithmeticae
1823 - Augustin-Louis Cauchy - Le Calcul infinitésimal
1847 - George Boole - The Mathematical Analysis of Logic

Question 12
What do you think?
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